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List of abbreviations: 

AREG  amphiregulin 

EGFR   Epidermal growth factor receptor 

EREG  epiregulin 

FLIM   Fluorescence Lifetime Imaging Microscopy 

FRET   Förster Resonance Energy Transfer 

LCA   Latent Class Analysis 

mCRC   Metastatic Colorectal Cancer  

MRC   Medical Research Council 

OS   Overall Survival 

PFS   Progression Free Survival 

TRT  Treatment 

WT  Wildtype 
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ABSTRACT 

Background: The phase 3 MRC COIN trial showed no statistically significant benefit 

from adding the EGFR-target cetuximab to oxaliplatin-based chemotherapy in first-line 

treatment of advanced colorectal cancer. This study exploits additional information on HER2-

HER3 dimerization to achieve patient stratification and reveal previously hidden subgroups 

of patients who had differing disease progression and treatment response. 

Methods: HER2-HER3 dimerization was quantified by “FLIM Histology” in primary 

tumor samples from 550 COIN trial patients receiving oxaliplatin and fluoropyrimidine 

chemotherapy +/-cetuximab. Bayesian latent class analysis (LCA) and covariate reduction 

was performed to analyze the effects of HER2-HER3 dimer, RAS mutation and cetuximab 

on progression-free survival (PFS) and overall survival (OS). All statistical tests were two-

sided. 

Results: LCA on a cohort of 398 patients revealed two patient subclasses with 

differing prognoses (median OS: 1624 days [95%CI=1466-1816] vs 461 [95%CI=431-504]): 

Class 1 (15.6%) showed a benefit from cetuximab in OS (HR=0.43 [95%CI=0.25-0.76]; 

p=0.004). Class 2 showed an association of increased HER2-HER3 with better OS 

(HR=0.64 [95%CI=0.44-0.94]; p=0.02). A class prediction signature was formed and tested 

on an independent validation cohort (N=152) validating the prognostic utility of the dimer 

assay. Similar subclasses were also discovered in full trial dataset (N=1,630) based on 10 

baseline clinicopathological and genetic covariates.  

Conclusions: Our work suggests that the combined use of HER dimer imaging and 

conventional mutation analyses will be able to identify a small subclass of patients (>10%) 

who will have better prognosis following chemotherapy. A larger prospective cohort will be 

required to confirm its utility in predicting the outcome of anti-EGFR treatment.  
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The selection of patients who are likely to benefit from treatment with an EGFR 

inhibitor with first line chemotherapy for metastatic colorectal cancer (mCRC) remains 

controversial. Two major trials have compared the addition of cetuximab or bevacizumab for 

patients with KRAS wildtype colorectal cancer [1-3]. FIRE-3 showed a statistically significant 

survival benefit from cetuximab, in contrary to the US-based CALGB 0405 study, leading to 

intense debate [4]. Results show markedly improved overall survival (OS) compared to older 

trials, partially driven by the selection of the better prognosis KRAS wildtype population. The 

presence of any extended RAS mutation [5] was demonstrated to exclude patients from 

benefit of panitumumab in the PRIME trial; this is now enshrined in license [6].  

Other molecular factors also influence responsiveness to the addition of an EGFR 

inhibitor: the presence of a BRAF mutation and low expression of key EGFR ligands, 

epiregulin (EREG) or amphiregulin (AREG), both predict a lack of benefit [7, 8]. The primary 

tumor’s site of origin is also important. Tumors arising from the right, midgut derived, colon, 

falling in the arterial supply of the superior mesenteric artery, are more frequently methylated 

(with resulting low expression of EGFR ligands) [9-11], more often have mismatch repair 

deficiency, and carry a RAF mutation [12-14].  Left-sided cancers more often exhibit those 

features of responsiveness to EGFR treatment, namely high ligand expression and RAS and 

RAF wildtype. Initial reports also indicated that PIK3CA mutations may be associated with 

diminished responsiveness but these conclusions were from small studies (2-11 patients 

with PIK3CA mutations) [15, 16]. Larger studies did not show a statistically significant 

difference [17, 18], with the exception of one study showing that PIK3CA exon 20 mutation 

confers a poorer outcome [19]. Despite all this, reliable methods for the identification of 

patients who may benefit from EGFR antibody therapy remain elusive.  

In this paper we describe a novel approach to this problem. It is known that HER 

(ErbB) mediated signaling is initiated following dimerization between the same 

(homodimerization) or different HER family members (EGFR, ErbB/HER1-4) [20]. Dimers 

containing HER3, especially the HER2-HER3 heterodimer, have been shown to provide the 
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most potent proliferative signal to cancer cells [21].  Recently, we showed in preclinical 

experiments the HER2-HER3 can be modulated upon cetuximab treatment of colorectal 

cancer cells [22]. The same heterodimer has been demonstrated using archived primary 

breast cancer samples and contains statistically significant prognostic information which is 

independent of that of HER2 receptor expression status [23]. It is usually difficult to 

determine whether the receptors are forming dimers but the technique of Förster Resonance 

Energy Transfer (FRET) reports on the immediate proximity, only achieved during 

dimerization. The combination of FRET with time-domain Fluorescence Lifetime Imaging 

Microscopy (FLIM) allows the minute fluorescence signals to be detected [24]. Hence FRET-

FLIM represents the most exquisitely sensitive method for determining what proportion of a 

receptor is dimerized. 

Here we report the use of “FLIM Histology”, a technique using FRET-FLIM as a 

measure of the proportion of receptors in the HER2-HER3 dimer state, a concentration 

independent parameter, based on a well-established gold standard technique to probe 

endogenous protein-protein interactions in cells [23, 25-30]. In 550 patients from the MRC 

COIN trial [31], combining the use of HER dimer measurement and recently reported 

Bayesian statistical methods [32-34], we aimed to identify subclasses of patients with 

different prognostic outcomes.  

MATERIALS AND METHODS 

Patients and Treatment 

In the MRC COIN trial (ISRCTN79877428) [31] patients with histologically confirmed 

adenocarcinoma of the colon or rectum, inoperable metastatic or locoregional measurable 

disease (RECIST v1.0), and were fit for first line combination chemotherapy, were 

randomized in a 1:1:1 ratio to receive the control arm of continuous oxaliplatin-based 

chemotherapy (A), or continuous chemotherapy plus cetuximab (B), or intermittent 
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chemotherapy (C).  This study was restricted to arms A and B. Two chemotherapy regimens, 

XELOX or OxMdG (oxaliplatin with modified deGramont, a FOLFOX variant), were used.   

Objectives and Outcome Measures 

The primary objective of the COIN A vs B comparison was to determine whether the 

addition of cetuximab to continuous chemotherapy resulted in improved outcome in patients 

with KRAS wildtype (WT) tumors. Overall Survival (OS) was calculated as time from 

randomization to death from any cause. Survivors were censored at the last known alive 

date. Progression Free Survival (PFS) was calculated as the interval from randomization to 

first evidence of progression or death from any cause.  Survivors without progression were 

censored at the last known alive date. 

Patient Samples and Imaging 

This study was approved by the Trial Steering Committee and FRET-FLIM was limited 

to those patients who had given written informed consent for ‘other bowel cancer research’, 

in whom sufficient residual pathological specimen was available.  

Patient tissue micro-arrays (TMAs) were retrieved from the Wales Cancer Bank and 

processed at King’s College London. Two consecutive slices of all TMAs underwent antigen 

retrieval in a Ventana BenchMark system and were stained with anti-HER3-IgG-Alexa546 

(‘donor’ or ‘D’ slice) and in addition with anti-HER2-IgG-Cy5 (‘donor with acceptor’ or ‘DA’ 

slice) and mounted as described previously [26]. 

TMA slices were imaged on an “open” automated FLIM microscope [35]. FLIM 

analysis was performed with the TRI2 software (v2.7.8.9, CRUK/MRC Oxford Institute for 

Radiation Oncology, Oxford) [36-38]. Autofluorescence effects were minimized with a 

lifetime filtering algorithm [39]. The FRET efficiency for each tissue region was calculated 

according to FRET efficiency = 1–(DA/D), where D and DA are the average lifetime of 

Alexa546 in the matching D and DA images respectively. FRET efficiency (denoted: 
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“FRET”), and FRET efficiency multiplied by HER3 fluorescence intensity, representing the 

amount of dimerized HER3, (“FRET x HER3”) were calculated as continuous variables 

(Supplementary Figure 1).  

The use of formol saline fixation, as opposed to neutral buffered formalin, resulted in 

excessive amounts of contaminating autofluorescence. These samples (292 patients) were 

excluded. 

TMAs from the 398-patient training set and the 152-patient validation set were 

received and processed independently in two batches. All analysis of the training set was 

performed before the validation TMAs were received, and was therefore performed 

completely blind and without knowledge of the validation set. 

Statistical Analysis 

Bayesian latent class analysis (LCA) was performed using the model described by 

Rowley et al. [32] (ALPACA v0.2.15), which seeks to detect and map association and base 

hazard rate heterogeneity. This results in objective cohort stratification, driven strictly by 

observed and statistically significant regularities in the data. Specification of the number of 

latent classes and the complexities of class-dependent base hazard rates, is based on 

Bayesian model selection. Patients were retrospectively assigned to latent groups according 

to maximum a posteriori class membership probability.  

Covariate reduction and the generation of predictive signatures was performed by 

Bayesian multivariate survival analysis with repeated cross-validation and backwards 

elimination with the aim of reducing overfitting [33]. 

Kaplan-Meier plots and log-rank statistics were produced using the R ‘survival’ 

package (v2.42-3, R v3.5.1). When p<0.05 the result was considered statistically significant 

and all tests were two-sided. 

RESULTS 
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Tissues from two cohorts of 398 and 152 patients (the ‘FRET’ training and validation 

cohorts respectively) were analyzed for HER2-HER3 dimerization. All patients also formed a 

‘full’ cohort of 1,630 patients. Figure 1 summarizes the patient selection for imaging and 

analysis and Table 1 contains the cohort patient characteristics. A continuous distribution of 

FRET efficiency with a mean value of 1.6%, (lower quartile 0.18%, upper quartile 2.7%) was 

recorded. Figure 2 shows typical images and FRET efficiency maps. 

LCA was performed on the FRET training cohort for both outcomes using, a minimal, 4 

covariates: FRET; FRET x HER3 (since HER protein concentration information is 

independent of dimer [40]); Treatment Arm (to give the algorithm the ability to detect groups 

with different responses); and RAS mutation status (because of its known association with 

cetuximab treatment).  

We report evidence of two novel latent classes in the 398-patient training set, with both 

PFS and OS analysis. The hazard ratios (HR) assigned to each covariate for each class is 

shown in Figure 3A-B. Based on PFS, 44/398 (11.1%) of patients were retrospectively 

assigned to Class 1, the remainder to Class 2; for OS 62/398 (15.6%) were assigned to 

Class 1. Figure 3C-D shows Kaplan-Meier plots split by class and treatment (TRT). Class 1 

patients had a better prognosis (median OS: 1624 days [95%CI=1466-1816] vs 461 

[95%CI=431-504]) and a predictive response to cetuximab which was more pronounced in 

OS: Class 1 TRT HR=0.43 [95%CI=0.25-0.76] logrank p=0.003 (median OS: 1447 days vs 

1668 days; difference = 221 days, see Supplementary Methods for more details). This is 

statistically significantly larger than among all patients in the cohort (median OS: 505 days vs 

581 days; difference = 76 days).  

The second and consistently larger group (Class 2) did not show a statistically 

significant benefit from cetuximab (PFS: HR=0.93 [95%CI=0.69-1.25], p=0.62, OS: HR=1.03 

[95%CI=0.74-1.42], p=0.88), however, increased FRET efficiency was associated with 

improved outcome (PFS: HR=0.63 [95%CI=0.46-0.88], p=0.006, OS: HR=0.64 
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[95%CI=0.44-0.94], p=0.02) (Figure 3A,C). Figure 3E-F shows Kaplan-Meier curves split by 

class and FRET demonstrating the benefit of cetuximab to those with a high FRET score. 

FRET x HER3 did not have a statistically significant HR.  

Table 2 shows the characteristics of the patient classes and gives an indication of 

which parameters may be useful in a prospective patient classifier (p<0.05): FRET 

(Supplementary Figure 2), liver-only metastases, PIK3CA mutation status, RECIST sum of 

longest diameter, neutrophil count, white blood cell count, pain at baseline, haemoglobin  

and alkaline phosphatase. 

Additional LCA was performed without the FRET parameters and determined that 

there was insufficient evidence for distinct latent groups. The HER2-HER3 FRET efficiency 

data therefore conveys additional information. 

As validation of this class structure we sought further evidence in the full COIN cohort 

(1,630 patients, including FRET cohorts) for whom clinical and genomic data was available. 

To maximize the utility of any findings for patient stratification we performed analysis with all 

available baseline covariates (115 covariates including missingness indicators, expanded 

categorical data and TRT, see Supplementary Methods). These were subject to Bayesian 

covariate reduction against OS and we identified a signature that combined 10 covariates 

(WHO performance status, previous adjuvant chemotherapy status, RECIST sum of longest 

diameter, number of metastatic sites, EREG, RAS status (KRAS or NRAS), BRAF status, 

neutrophil count, alkaline phosphatase and pain).  

These 10 covariates, plus TRT, in the full cohort were subject to OS-based LCA which 

revealed that three classes were most likely (Figure 4A). Class 1 (N=93/1630) indicates a 

possibility of a positive response to cetuximab (HR=0.71 [95%CI=0.45-1.14], p=0.16), Class 

2 (N=350/1630) shows no response (HR=0.94 [95%CI=0.70-1.25], p=0.66) and Class 3 

(N=1187/1630) shows a statistically significant negative response (HR=1.34 [95%CI=1.10-
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1.71], p=0.005). This is reflected in the Kaplan-Meier curve split by class and TRT (Figure 

4B). PFS-based LCA did not reveal interesting classes. 

To investigate the overlap in membership of individual patients between the classes of 

the two LCA analyses from the FRET cohort and the full cohort, the class membership table 

for the 398 FRET cohort patients is presented in Figure 4C. A permutations test (100,000 

random permutations of 398 patients into classes in these proportions) indicated a 

probability of <1/100,000 for obtaining this overlap in membership by chance. LCA was also 

performed on the non-overlapping set of 1,232 patients (1,630 minus 398) and a similar 

three groups were found (See Supplementary Figure 3).  

In the FRET cohort there was a statistically significant association of PIK3CA mutation 

with better OS (median 875 vs 504 days, logrank p=0.03, Supplementary Figure 4), which 

agrees with the observation of a higher proportion of PIK3CA mutant in the responding Class 

1. This association was not detectable in the full cohort. A breakdown into exon 9 or exon 20 

PIK3CA mutation groups did not reveal any statistically significant differences in PFS or OS, 

in either cohort (FRET cohort: exon 9, N=37/398, exon 20, N=12/398; full cohort exon 9, 

N=106/1630, exon 20, N=50/1630). 

To form a covariate signature that may predict class membership we performed 

Bayesian covariate reduction on the union of the nine covariates identified in Table 2 and 

the 10 prognostic baseline covariates: total 15. The resulting signature contained seven 

statistically significant covariates (RECIST sum of longest diameter, neutrophil count, white 

blood cell count, haemoglobin, PIK3CA mutation status, liver-only metastases and FRET) 

with associated weights (Figure 5A). 

The performance against the LCA class assignment of the 398 is shown in Figure 5B 

(AUC: 0.753). The signature was used as a classifier, by selecting an optimal point on the 

ROC curve (according to Youden’s index) with specificity of 0.677 and sensitivity of 0.708. 

The results on the 398 training set and the independent validation set of 152 are shown in 
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Figure 5C-D with survival curves split by class and treatment. The re-classification of the 

398 patients using the new signature-based classifier clearly retains the prognostic 

(p=0.001, chemo only patients) and predictive (p=0.04) elements of the classes. In the 152-

patient validation set we again recreate the prognostic behavior (p=0.04 (both TRT arms), 

p=0.09 (chemo only patients)).  

Another signature was produced without FRET (from 14 parameters, Figure 5E) and 

Figure 5F-G demonstrate that the with-FRET signature has prognostic power in the 

validation set, where the without-FRET signature does not. The interplay of FRET with the 

other covariates is explored in Supplementary Figure 5. 

DISCUSSION 

The selection of patients for EGFR-inhibitor treatment for mCRC remains difficult. With 

KRAS WT patients, the addition of EGFR-targeted treatment (cetuximab/panitumumab) to 

irinotecan or oxaliplatin chemotherapy [1, 6, 41, 42], is associated with a statistically 

significant survival benefit in three of four phase 2/3 trials [1, 6, 42]. However, the 

improvement of median PFS was only around 1-2 months. In the phase 2 OPUS trial, 

addition of cetuximab to FOLFOX4 resulted in a statistically significant improvement in PFS 

(8.3 months vs 7.2 months, p=0.006) [42]. In contrast, the NORDIC VII trial reported no 

benefits from adding cetuximab to oxaliplatin-based regimen (with bolus 5-FU) [41].  EGFR 

immunohistochemistry is not a sufficient predictive factor for clinical benefit for cetuximab in 

the KRAS WT population [43, 44].  

 Further molecular stratification by identifying novel subgroups will make a meaningful 

contribution towards assessing the efficacy of EGFR targeting in future clinical trials. Here 

we present the application of our recently improved and validated [23] FLIM Histology 

analysis method for quantification of HER2-HER3 dimer in FFPE samples from the 

randomized phase 3 MRC COIN trial. Using FLIM-based molecular imaging parameters and 

a recently published Bayesian statistical method [32] we have shown that there are two 
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classes of patients with mCRC. Class 1 (10-15% of patients) had a better prognosis and also 

benefited from addition of cetuximab to the standard chemotherapy. Within Class 2 (85-90% 

of patients), patients have less favorable survival (median PFS circa 7.5 months) and no 

benefit from cetuximab.   

To validate these results we formed a biomarker that predicts class membership by 

creating a novel signature of seven parameters that were pre-determined by the two 

Bayesian latent class analyses.  This was applied to the training set of 398 and we retained 

the predictive and prognostic elements of, the smaller, Class 1. Notably, the prognostic 

effect on survival (195 days, comparing chemotherapy only patients between Classes 1 and 

2) was larger than the predictive effect (136 days, comparing Class 1 patients with/without 

cetuximab). Application of the signature to the completely independent validation set of 152 

patients was sufficient to validate the prognostic (but not the predictive) utility. In addition, we 

found that patients exhibiting a high FRET value are more likely to be in the worst prognostic 

outcome subclass i.e. Class 2 (Table 2) as reflected in the class prediction signature (Figure 

5A). However, within Class 2 a high FRET value can be indicative of better outcome within 

that class dependent on the other signature covariates. Importantly, the class prediction 

(seven-parameter) signature is entirely dependent on the inclusion of the HER2-HER3 dimer 

quantity. 

We chose HER2-HER3 because it has been shown to be the most tumor promoting 

dimer among EGFR family members, due to its downstream activation of PI3-kinase 

(PI3K)/AKT and MAPK pathways [45-47]. Secondly, the mRNA expression of alternative 

ligands such as EREG, which has been shown to modulate the efficacy of EGFR-targeted 

agents in KRAS WT mCRCs [7], is the broadest specificity EGF-like ligand that induces the 

widespread phosphorylation of HER1-4 [48]. Although the mechanism of this modulation is 

not precisely known, EREG, as opposed to EGF, can recruit HER3 into heterodimers, as 

reflected by its enhancement on the proliferative activity on cells co-expressing a 

combination of HER3 with either HER2 or HER4 [49]. Thirdly, we showed by FRET-FLIM 
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imaging, an induction of HER2-HER3 dimers after cetuximab treatment in KRAS and BRAF 

WT colon cancer cells [22].  

The additional HER2-HER3 dimer parameter as measured by FLIM may be important 

for the future stratification of anti-HER2 treatment combination using pertuzumab plus 

trastuzumab [50]. Notably, HER2 activity (of prognostic signature) has been shown 

previously to be measurable by FLIM independently of HER2 concentration [23].  

This new retrospective analysis suggests that the proportion of patients gaining benefit 

from cetuximab may be as small as 10% and concurs with clinical data that these patients 

are amongst those with the best baseline prognosis. HER2-HER3 FRET-FLIM provided new 

information enabling the statistical method to identify this latent class.  This hypothesis 

generating data shows the potential of measurement of dimers and demonstrates the utility 

of FRET-FLIM to assess dimerization in FFPE tissue.  

Further preclinical experiments, using patient derived organoids for example, are 

needed to understand the statistically significantly increased prevalence of PIK3CA 

mutations in the discovered Class 1. Previously anti-EGFR response was shown to be 

higher for RAS WT patients who expressed pEGFR and pAkt [51]. pAkt may in turn be linked 

to EGFR trafficking and degradation, and therefore treatment response, warranting further 

study [52]. Furthermore, the predictive utility of this assay may be further enhanced by the 

inclusion of pre- and post-treatment dimer measurements as we have recently demonstrated 

in a Phase 2 head and neck study using an exosomal HER dimer assay [53]. 

In conclusion, this study demonstrates how a novel Bayesian LCA, signature 

generation and covariate reduction can be used as objective approaches to generate 

hypotheses for treatment. Given that the identification of prognostic and predictive 

biomarkers and clinical characteristics in colorectal cancers is an active area of research, 

this study shows how the development and application of statistical methods contributes to 

the retrospective analysis of trials. The ability to model and quantify the evidence for putative 
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patient stratifications is therefore a crucial initial step towards identifying and validating 

strategies for targeting therapies. 
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Table 1: Patient characteristics of the Full and FRET cohorts. 

Covariate Full Cohort FRET Training FRET Validation 

N 1630 398 152 

TRT = B (%)     815 (50.0)     209 (52.5)      80 (52.6)  

CHEMO = XELOX (%)    1070 (65.6)     223 (56.0)     111 (73.0)  

Age (at randomisation) (mean (sd))   62.34 (9.79)  63.04 (9.60)  62.77 (9.12) 

SEX = Male (%)    1069 (65.6)     278 (69.8)      95 (62.5)  

Height (cm) (mean (sd))  170.10 (9.33) 170.14 (9.13) 169.65 (8.92) 

Weight (Kg) (mean (sd))   76.05 (15.98)  75.66 (15.63)  78.02 (17.39) 

WHO performance status (mean (sd))    0.62 (0.62)   0.58 (0.59)   0.62 (0.65) 

Sidedness of primary tumour (%)             

   Left-sided    1138 (69.8)     274 (68.8)     103 (67.8)  

   Right-sided     460 (28.2)     117 (29.4)      48 (31.6)  

   unknown      32 ( 2.0)       7 ( 1.8)       1 ( 0.7)  

TSTAT (%)             

   Local recurrence      88 ( 5.4)      24 ( 6.0)      18 (11.8)  

   Resected     865 (53.1)     315 (79.1)     115 (75.7)  

   Unresected/unresectable     677 (41.5)      59 (14.8)      19 (12.5)  

Number of metastatic sites = polymetastatic (>3) (%)      71 ( 4.4)      17 ( 4.3)       6 ( 3.9)  

mlivonly = Yes (%)     368 (22.6)      98 (24.6)      34 (22.4)  

metscat (%)             

   Metachronous     489 (30.0)     159 (39.9)      68 (44.7)  

   Synchronous    1123 (68.9)     237 (59.5)      84 (55.3)  

   unknown      18 ( 1.1)       2 ( 0.5)       0 ( 0.0)  

MNODE = Yes (%)     720 (44.2)     172 (43.2)      75 (49.3)  

Tumour marker: CEA value (mean (sd))  686.99 (2849.05) 374.37 (1310.56) 484.72 (1463.96) 

Tumour marker: CA 19-9 value (mean (sd)) 2946.00 (13052.42) 546.26 (705.36) 254.50 (152.78) 

EREG Cq value, negated (mean (sd))   -3.16 (2.26)  -3.28 (2.27)  -3.10 (2.01) 

AREG Cq value, negated (mean (sd))   -2.82 (1.60)  -2.84 (1.58)  -2.73 (1.65) 

KRAS (%)             

   Mutation     570 (35.0)     165 (41.5)      73 (48.0)  

   Wild-type     744 (45.6)     225 (56.5)      78 (51.3)  

   unknown     316 (19.4)       8 ( 2.0)       1 ( 0.7)  

NRAS (%)             

   Mutation      51 ( 3.1)      17 ( 4.3)       5 ( 3.3)  

   Wild-type    1259 (77.2)     374 (94.0)     147 (96.7)  

   unknown     320 (19.6)       7 ( 1.8)       0 ( 0.0)  

MSI (%)             

   MSI      45 ( 2.8)      15 ( 3.8)       5 ( 3.3)  

   Stable     977 (59.9)     314 (78.9)     132 (86.8)  

   unknown     608 (37.3)      69 (17.3)      15 ( 9.9)  

PIK3CA (%)             

   Mutation     156 ( 9.6)      49 (12.3)      26 (17.1)  

   Wild-type    1107 (67.9)     334 (83.9)     126 (82.9)  

   unknown     367 (22.5)      15 ( 3.8)       0 ( 0.0)  
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BRAF (%)             

   Mutation     102 ( 6.3)      29 ( 7.3)      11 ( 7.2)  

   Wild-type    1192 (73.1)     360 (90.5)     141 (92.8)  

   unknown     336 (20.6)       9 ( 2.3)       0 ( 0.0)  

ADJCH (%)             

   >1m and <6m ago      68 ( 4.2)      24 ( 6.0)       8 ( 5.3)  

   >6 months ago     261 (16.0)      82 (20.6)      33 (21.7)  

   No    1218 (74.7)     269 (67.6)      99 (65.1)  

   Yes (unspecified)      83 ( 5.1)      23 ( 5.8)      12 ( 7.9)  

Sum of longest diameter (mean (sd))  106.65 (85.19) 103.88 (81.57)  96.05 (70.83) 

Platelet count (mean (sd))  356.31 (132.62) 346.38 (119.65) 329.67 (132.96) 

Neutrophil count (mean (sd))    6.29 (3.58)   5.77 (2.64)   5.96 (4.94) 

White blood cell count (mean (sd))    8.98 (3.99)   8.51 (3.06)   8.26 (2.92) 

Alkaline phosphatase (mean (sd))  191.67 (176.79) 180.77 (171.20) 170.72 (145.04) 

PAIN at baseline (CTC grade) (mean (sd))    0.55 (0.74)   0.49 (0.72)   0.38 (0.66) 

Anorexia at baseline (CTC grade) (mean (sd))    0.23 (0.54)   0.20 (0.50)   0.12 (0.37) 

Vomiting at baseline (CTC grade) (mean (sd))    0.04 (0.24)   0.03 (0.21)   0.02 (0.14) 

Lethargy at baseline (CTC grade) (mean (sd))    0.49 (0.65)   0.44 (0.60)   0.38 (0.61) 

Haemaglobin at baseline (CTC grade) (mean (sd))    0.25 (0.56)   0.20 (0.47)   0.12 (0.40) 

Nail changes at baseline (CTC grade) (mean (sd))    0.01 (0.09)   0.02 (0.14)   0.00 (0.00) 
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Table 2: Patient characteristics of the 2 discovered latent classes for PFS and OS from the 

FRET cohort. 

Covariate PFS Class 1 PFS Class 2 
p-

value* OS Class 1 OS Class 2 
p-

value* 

n 44 354 
 

62 336 
 Treatment arm = B (%)     31 (70.5)     178 (50.3)  0.02     40 (64.5)     169 (50.3)  0.05 

CHEMO = XELOX (%)     20 (45.5)     203 (57.3)  0.18     33 (53.2)     190 (56.5)  0.73 

Age (at randomisation) 
(mean (sd))  61.64 (10.65)  63.22 (9.47) 0.30  61.65 (11.71)  63.30 (9.16) 0.21 

Sex = Male (%)     29 (65.9)     249 (70.3)  0.67     41 (66.1)     237 (70.5)  0.59 

Height (cm) (mean (sd)) 170.16 (8.78) 170.13 (9.19) 0.99 169.87 (8.95) 170.19 (9.18) 0.80 

Weight (Kg) (mean (sd))  74.40 (12.93) 
 75.82 
(15.94) 0.57  74.92 (14.11)  75.80 (15.91) 0.68 

WHO performance 
status (mean (sd))   0.43 (0.59)   0.60 (0.59) 0.07   0.45 (0.56)   0.61 (0.59) 0.06 

Sidedness of primary 
tumour (%)          0.22          0.93 

   Left-sided     35 (79.5)     239 (67.5)  
 

    44 (71.0)     230 (68.5)  
    Right-sided      9 (20.5)     108 (30.5)  

 
    17 (27.4)     100 (29.8)  

    unknown      0 ( 0.0)       7 ( 2.0)  
 

     1 ( 1.6)       6 ( 1.8)  
 Baseline tumour status 

(%)          0.006          0.01 

   Local recurrence      7 (15.9)      17 ( 4.8)  
 

     6 ( 9.7)      18 ( 5.4)  
    Resected     34 (77.3)     281 (79.4)  

 
    54 (87.1)     261 (77.7)  

    
Unresected/unresectable      3 ( 6.8)      56 (15.8)  

 
     2 ( 3.2)      57 (17.0)  

 Number of metastatic 
sites = polymetastatic 
(>3) (%)      0 ( 0.0)      17 ( 4.8)  0.28      1 ( 1.6)      16 ( 4.8)  0.43 

Liver-only metastases = 
Yes (%)     17 (38.6)      81 (22.9)  0.04     24 (38.7)      74 (22.0)  0.008 

Timing of metastases (%)          0.88          0.70 

   Metachronous     18 (40.9)     141 (39.8)  
 

    27 (43.5)     132 (39.3)  
    Synchronous     26 (59.1)     211 (59.6)  

 
    35 (56.5)     202 (60.1)  

    unknown      0 ( 0.0)       2 ( 0.6)  
 

     0 ( 0.0)       2 ( 0.6)  
 Nodal metastases status 

= Yes (%)     18 (40.9)     154 (43.5)  0.87     24 (38.7)     148 (44.0)  0.52 

Tumour marker: CEA 
value (mean (sd)) 274.76 (641.77) 

384.72 
(1361.65) 0.67 594.24 (2987.25) 339.65 (774.76) 0.24 

Tumour marker: CA 19-9 
value (mean (sd)) 278.00 (382.52) 

586.50 
(740.01) 0.49 719.00 538.41 (720.93)   

EREG Cq value, negated 
(mean (sd))  -2.90 (2.09)  -3.32 (2.29) 0.31  -2.97 (2.55)  -3.33 (2.23) 0.32 

AREG Cq value, negated 
(mean (sd))  -2.65 (1.59)  -2.86 (1.58) 0.46  -2.69 (1.53)  -2.86 (1.59) 0.48 

KRAS mutation status (%)          0.39          0.54 

   Mutation     14 (31.8)     151 (42.7)  
 

    22 (35.5)     143 (42.6)  
    Wild-type     29 (65.9)     196 (55.4)  

 
    39 (62.9)     186 (55.4)  

    unknown      1 ( 2.3)       7 ( 2.0)  
 

     1 ( 1.6)       7 ( 2.1)  
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NRAS mutation status 
(%)          0.50          0.46 

   Mutation      1 ( 2.3)      16 ( 4.5)  
 

     2 ( 3.2)      15 ( 4.5)  
    Wild-type     43 (97.7)     331 (93.5)  

 
    60 (96.8)     314 (93.5)  

    unknown      0 ( 0.0)       7 ( 2.0)  
 

     0 ( 0.0)       7 ( 2.1)  
 Microsatellite stability 

status (%)          0.53          0.78 

   MSI      2 ( 4.5)      13 ( 3.7)  
 

     2 ( 3.2)      13 ( 3.9)  
    Stable     37 (84.1)     277 (78.2)  

 
    51 (82.3)     263 (78.3)  

    unknown      5 (11.4)      64 (18.1)  
 

     9 (14.5)      60 (17.9)  
 PIK3CA mutation status 

(%)          0.37          0.009 

   Mutation      6 (13.6)      43 (12.1)  
 

    14 (22.6)      35 (10.4)  
    Wild-type     38 (86.4)     296 (83.6)  

 
    48 (77.4)     286 (85.1)  

    unknown      0 ( 0.0)      15 ( 4.2)  
 

     0 ( 0.0)      15 ( 4.5)  
 BRAF mutation status (%)          0.54          0.89 

   Mutation      5 (11.4)      24 ( 6.8)  
 

     4 ( 6.5)      25 ( 7.4)  
    Wild-type     38 (86.4)     322 (91.0)  

 
    57 (91.9)     303 (90.2)  

    unknown      1 ( 2.3)       8 ( 2.3)  
 

     1 ( 1.6)       8 ( 2.4)  
 Adjuvant chemotherapy 

(%)          0.71          0.83 

   >1m and <6m ago      3 ( 6.8)      21 ( 5.9)  
 

     4 ( 6.5)      20 ( 6.0)  
    >6 months ago     10 (22.7)      72 (20.3)  

 
    13 (21.0)      69 (20.5)  

    No     27 (61.4)     242 (68.4)  
 

    43 (69.4)     226 (67.3)  
    Yes (unspecified)      4 ( 9.1)      19 ( 5.4)  

 
     2 ( 3.2)      21 ( 6.2)  

 Sum of longest diameter 
(mean (sd))  81.66 (74.30) 

106.67 
(82.11) 0.05  68.39 (52.90) 110.49 (84.28) <0.001 

Platelet count (mean 
(sd)) 348.34 (109.90) 

346.13 
(120.95) 0.91 341.32 (99.13) 347.31 (123.18) 0.72 

Neutrophil count (mean 
(sd))   4.76 (1.69)   5.90 (2.71) 0.007   5.10 (1.73)   5.90 (2.76) 0.03 

White blood cell count 
(mean (sd))   7.50 (2.15)   8.63 (3.14) 0.02   7.98 (2.28)   8.61 (3.18) 0.14 

Alkaline phosphatase 
(mean (sd)) 171.11 (207.48) 

181.98 
(166.44) 0.69 140.52 (150.16) 188.22 (174.00) 0.04 

PAIN at baseline (CTC 
grade) (mean (sd))   0.32 (0.60)   0.51 (0.74) 0.09   0.32 (0.65)   0.52 (0.73) 0.05 

Anorexia at baseline (CTC 
grade) (mean (sd))   0.09 (0.29)   0.21 (0.51) 0.13   0.16 (0.45)   0.20 (0.50) 0.53 

Vomiting at baseline 
(CTC grade) (mean (sd))   0.00 (0.00)   0.03 (0.22) 0.31   0.00 (0.00)   0.04 (0.23) 0.22 

Lethargy at baseline (CTC 
grade) (mean (sd))   0.34 (0.57)   0.45 (0.60) 0.24   0.32 (0.57)   0.46 (0.60) 0.09 

Haemaglobin at baseline 
(CTC grade) (mean (sd))   0.09 (0.29)   0.22 (0.49) 0.09   0.10 (0.30)   0.22 (0.50) 0.05 

Nail changes at baseline 
(CTC grade) (mean (sd))   0.00 (0.00)   0.02 (0.15) 0.31   0.00 (0.00)   0.02 (0.15) 0.22 

FRET: HER2-HER3 FRET 
efficiency (mean (sd))   0.01 (0.02)   0.02 (0.02) 0.006   0.01 (0.02)   0.02 (0.03) 0.10 

FRET x HER3 intensity 
(mean (sd))   0.26 (1.37)   0.66 (1.81) 0.15   0.52 (1.26)   0.64 (1.85) 0.63 

*Chi-squared test for categorical values or ANOVA for continuous variables, all two-sided. 
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FIGURE TITLES and LEGENDS 

Figure 1: CONSORT diagram of patient selection and analysis flow for the FRET 

cohorts that were subject to dimer imaging and the Full Cohort. Patients excluded at 

the TMA and Image quality control stage had insufficient tissue remaining on the slide or the 

tissue was of bad quality (e.g. folded) or the donor and donor-acceptor areas could not be 

matched. Class membership revealed by the Latent Class Analysis on the FRET cohort of 

398 was used to train a class membership signature, which was tested in the validation set 

of 152 patients. The concordance between the latent class analysis on the FRET and Full 

cohorts was assessed in a class overlap comparison. FS = formol saline. Treatment arms: 

A=Oxaliplatin and Fluoropyrimidine Chemotherapy, B=A+Cetuximab, C=Intermittent 

Chemotherapy. 

 

Figure 2: Detection of HER2-HER3 dimerization by FLIM. Pseudo colour FRET efficiency 

maps indicate degree of HER2-HER3 interaction. Scale bar = 50 m.  

 

Figure 3: Multivariate latent class analysis (LCA) of the FRET cohort. A,B) Tables of 

covariate associated hazard ratios for the 2 discovered classes. For those in Class 1, 

Treatment Arm B (cetuximab) was protective (for OS, squares). For those in Class 2, a high 

FRET HER2-HER3 dimer score was protective (circles). C,D) Survival curves split by class 

and treatment arm to show potential prognostic and predictive value, for OS and PFS. Log 

rank p-values for prognostic and predictive splits show that FRET-based LCA with 398 

patients has a clear prognostic (log-rank p<0.001) and a potential predictive value: 

Cetuximab (TRT arm B) was effective for patients in OS Class 1 (log-rank p=0.05). E,F) 

Survival curves split by class and FRET efficiency. The statistically significant HR associated 

with FRET in Class 2 is demonstrated. Patients in Class 2 have a better outcome if their 
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HER2-HER3 FRET Efficiency is in the upper tertile (PFS log-rank p<0.001, OS log-rank 

p=0.02). All statistical tests were two-sided. 

 

Figure 4: Latent Class Analysis testing for similar classes within the full cohort using 

baseline covariates and OS. A) Table of covariates of statistical significance. B) Kaplan-

Meier plot split by class and treatment arm. The 3 classes are prognostic (log-rank p<0.001). 

Class 3 predicts a treatment response (log-rank p<0.001). C) LCA OS Class membership 

comparison between the 398 FRET cohort (2 classes, Figure 3) and the overlap with the full 

cohort (3 classes). A randomised permutations test indicates a non-random overlap of 

patients with the class sets. All statistical tests were two-sided. 

 

 

Figure 5: Mixed covariate class prediction signatures with and without FRET. A) Table 

of selected covariates in the with-FRET signature, ranked by importance. The Weight 

indicates how each covariate should be combined to form a class prediction score, with a 

constant that gives the signature a zero mean. Class 2 is associated with a signature score 

> -0.335. High FRET favours Class 2 because of its positive weight. B) ROC curve for the 

class prediction score showing it’s performance in predicting the class of the 398 patients in 

the training set (Specificity=0.677, Sensitivity=0.708) and the optimal class threshold (-

0.335). C,D) Survival curves split by class and treatment arm for the training set and 

independent validation set, respectively. E) Table of selected covariates in the without-FRET 

signature. F,G) Survival curves split by class for the with- and without-FRET signatures 

applied to the 152 validation set. FRET provides information that splits the classes (log rank 

p-value=0.04). 
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