652 research outputs found

    Higgs mass predictions of public NMSSM spectrum generators

    Full text link
    The publicly available spectrum generators for the NMSSM often lead to different predictions for the mass of the standard model-like Higgs boson even if using the same renormalization scheme and two-loop accuracy. Depending on the parameter point, the differences can exceed 5 GeV, and even reach 8 GeV for moderate superparticle masses of up to 2 TeV. It is shown here that these differences can be traced back to the calculation of the running standard model parameters entering all calculations, to the approximations used in the two-loop corrections included in the different codes, and to different choices for the renormalization conditions and scales. In particular, the importance of the calculation of the top Yukawa coupling is pointed out.Comment: 24 pages, no figures; v2: slightly extended discussion, matches version accepted for publication by CP

    Measurement of Blade Deflection of an Unmanned Intermeshing Rotor Helicopter

    Get PDF
    The dynamic behavior of intermeshing rotor blades is complex and subjected to rotor-rotor-interactions like oblique blade-vortex and blade-wake interactions. To gain a better understanding of these effects a blade deflection measurement method is proposed in this paper. The method is based on a single camera per rotor blade depicting the rotor blade from a position fixed to the rotor head. Due to the mounting position of the camera close to the rotational plane the method is called In-Plane Blade Deflection Measurement (IBDM). The basic principles, data processing and measurement accuracy are presented in the paper. The major advantages of the proposed method are the applicability to both, flight and wind tunnel trials, as well as the usability for multi-rotor configurations having a significant rotor overlap. Furthermore comparisons to other blade deflection measurement methods are presented. Finally, experimental data of a flight test of an unmanned intermeshing helicopter is presented

    Towards Standardized Mobility Reports with User-Level Privacy

    Full text link
    The importance of human mobility analyses is growing in both research and practice, especially as applications for urban planning and mobility rely on them. Aggregate statistics and visualizations play an essential role as building blocks of data explorations and summary reports, the latter being increasingly released to third parties such as municipal administrations or in the context of citizen participation. However, such explorations already pose a threat to privacy as they reveal potentially sensitive location information, and thus should not be shared without further privacy measures. There is a substantial gap between state-of-the-art research on privacy methods and their utilization in practice. We thus conceptualize a standardized mobility report with differential privacy guarantees and implement it as open-source software to enable a privacy-preserving exploration of key aspects of mobility data in an easily accessible way. Moreover, we evaluate the benefits of limiting user contributions using three data sets relevant to research and practice. Our results show that even a strong limit on user contribution alters the original geospatial distribution only within a comparatively small range, while significantly reducing the error introduced by adding noise to achieve privacy guarantees

    Process-Based Design and Integration of Wireless Sensor Network Applications

    Get PDF
    Abstract Wireless Sensor and Actuator Networks (WSNs) are distributed sensor and actuator networks that monitor and control real-world phenomena, enabling the integration of the physical with the virtual world. They are used in domains like building automation, control systems, remote healthcare, etc., which are all highly process-driven. Today, tools and insights of Business Process Modeling (BPM) are not used to model WSN logic, as BPM focuses mostly on the coordination of people and IT systems and neglects the integration of embedded IT. WSN development still requires significant special-purpose, low-level, and manual coding of process logic. By exploiting similarities between WSN applications and business processes, this work aims to create a holistic system enabling the modeling and execution of executable processes that integrate, coordinate, and control WSNs. Concretely, we present a WSNspecific extension for Business Process Modeling Notation (BPMN) and a compiler that transforms the extended BPMN models into WSN-specific code to distribute process execution over both a WSN and a standard business process engine. The developed tool-chain allows modeling of an independent control loop for the WSN.

    Precision tools and models to narrow in on the 750 GeV diphoton resonance

    Get PDF
    The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.Comment: 184 pages, 24 figures; model files available at http://sarah.hepforge.org/Diphoton_Models.tar.gz; v2: added a few clarifications and reference

    RRTxFM: Probabilistic Counting for Differentially Private Statistics

    Get PDF
    Data minimization has become a paradigm to address privacy concerns when collecting and storing personal data. In this paper we present two new approaches, RSTxFM and RRTxFM, to estimate the cardinality of a dataset while ensuring differential privacy. We argue that privacy-preserving cardinality estimators are able to realize strong privacy requirements. Both approaches are based on a probabilistic counting algorithm which has a logarithmic space complexity. We combine this with a randomization technique to provide differential privacy. In our analysis, we detail the privacy and utility guarantees and expose the impact of the various parameters. Moreover, we discuss workforce analytics as application area where strong privacy is paramount

    "Am I Private and If So, how Many?" - Communicating Privacy Guarantees of Differential Privacy with Risk Communication Formats

    Full text link
    Decisions about sharing personal information are not trivial, since there are many legitimate and important purposes for such data collection, but often the collected data can reveal sensitive information about individuals. Privacy-preserving technologies, such as differential privacy (DP), can be employed to protect the privacy of individuals and, furthermore, provide mathematically sound guarantees on the maximum privacy risk. However, they can only support informed privacy decisions, if individuals understand the provided privacy guarantees. This article proposes a novel approach for communicating privacy guarantees to support individuals in their privacy decisions when sharing data. For this, we adopt risk communication formats from the medical domain in conjunction with a model for privacy guarantees of DP to create quantitative privacy risk notifications. We conducted a crowd-sourced study with 343 participants to evaluate how well our notifications conveyed the privacy risk information and how confident participants were about their own understanding of the privacy risk. Our findings suggest that these new notifications can communicate the objective information similarly well to currently used qualitative notifications, but left individuals less confident in their understanding. We also discovered that several of our notifications and the currently used qualitative notification disadvantage individuals with low numeracy: these individuals appear overconfident compared to their actual understanding of the associated privacy risks and are, therefore, less likely to seek the needed additional information before an informed decision. The promising results allow for multiple directions in future research, for example, adding visual aids or tailoring privacy risk communication to characteristics of the individuals.Comment: Accepted to ACM CCS 2022. arXiv admin note: substantial text overlap with arXiv:2204.0406

    "Am I Private and If So, how Many?" -- Using Risk Communication Formats for Making Differential Privacy Understandable

    Full text link
    Mobility data is essential for cities and communities to identify areas for necessary improvement. Data collected by mobility providers already contains all the information necessary, but privacy of the individuals needs to be preserved. Differential privacy (DP) defines a mathematical property which guarantees that certain limits of privacy are preserved while sharing such data, but its functionality and privacy protection are difficult to explain to laypeople. In this paper, we adapt risk communication formats in conjunction with a model for the privacy risks of DP. The result are privacy notifications which explain the risk to an individual's privacy when using DP, rather than DP's functionality. We evaluate these novel privacy communication formats in a crowdsourced study. We find that they perform similarly to the best performing DP communications used currently in terms of objective understanding, but did not make our participants as confident in their understanding. We also discovered an influence, similar to the Dunning-Kruger effect, of the statistical numeracy on the effectiveness of some of our privacy communication formats and the DP communication format used currently. These results generate hypotheses in multiple directions, for example, toward the use of risk visualization to improve the understandability of our formats or toward adaptive user interfaces which tailor the risk communication to the characteristics of the reader

    Transport Coefficients from Large Deviation Functions

    Full text link
    We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.Comment: 11 pages, 5 figure

    Organizational culture, leadership style and effectiveness: A case study of middle eastern construction clients

    Get PDF
    During the last few decades, organizational effectiveness has received a great deal of attention in many industrial sectors. As a result, a variety of models have been formulated which measure organizational performance. In the construction industry, two factors have subsequently captured the imagination and interest of researchers and practitioners alike: the culture of the organization and the leadership style of project managers. This focus places a requirement upon construction organizations to recognize and understand their organizational culture, and equally, to clearly communicate it to their employees as part of their capitalist drive of constantly improving performance, productivity and profit. Traditional ways of conducting construction business require a sound understanding of the technical and managerial demands of executing projects, which in turn, places an increased emphasis upon the management and leadership competencies of individual project managers. The purpose of the research is to explore the relationship between organizational culture, authentic leadership style and effectiveness within the context of a case study investigation centred on Middle Eastern construction clients and their project managers. The outcomes of the investigation, which include the presentation of an explanatory model, indicate that organizational culture is directly and positively related to performance and effectiveness, while project managers' leadership style has an indirect relationship to effectiveness. A strong organizational culture is therefore deemed critical to organizational performance
    • …
    corecore