88 research outputs found

    Failure to rescue patients after emergency laparotomy for large bowel perforation: analysis of the National Emergency Laparotomy Audit (NELA).

    Get PDF
    BACKGROUND: Past studies have highlighted variation in in-hospital mortality rates among hospitals performing emergency laparotomy for large bowel perforation. The aim of this study was to investigate whether failure to rescue (FTR) contributes to this variability. METHODS: Patients aged 18 years or over requiring surgery for large bowel perforation between 2013 and 2016 were extracted from the National Emergency Laparotomy Audit (NELA) database. Information on complications were identified using linked Hospital Episode Statistics data and in-hospital deaths from the Office for National Statistics. The FTR rate was defined as the proportion of patients dying in hospital with a recorded complication, and was examined in hospitals grouped as having low, medium or high overall postoperative mortality. RESULTS: Overall, 6413 patients were included with 1029 (16.0 per cent) in-hospital deaths. Some 3533 patients (55.1 per cent) had at least one complication: 1023 surgical (16.0 per cent) and 3332 medical (52.0 per cent) complications. There were 22 in-hospital deaths following a surgical complication alone, 685 deaths following a medical complication alone, 150 deaths following both a surgical and medical complication, and 172 deaths with no recorded complication. The risk of in-hospital death was high among patients who suffered either type of complication (857 deaths in 3533 patients; FTR rate 24.3 per cent): 172 deaths followed a surgical complication (FTR-surgical rate 16.8 per cent) and 835 deaths followed a medical complication (FTR-medical rate of 25.1 per cent). After adjustment for patient characteristics and hospital factors, hospitals grouped as having low, medium or high overall postoperative mortality did not have different FTR rates (P = 0.770). CONCLUSION: Among patients having emergency laparotomy for large bowel perforation, efforts to reduce the risk of in-hospital death should focus on reducing avoidable complications. There was no evidence of variation in FTR rates across National Health Service hospitals in England

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Functional Analysis and Molecular Dynamics Simulation of LOX-1 K167N Polymorphism Reveal Alteration of Receptor Activity

    Get PDF
    The human lectin-like oxidized low density lipoprotein receptor 1 LOX-1, encoded by the ORL1 gene, is the major scavenger receptor for oxidized low density lipoprotein in endothelial cells. Here we report on the functional effects of a coding SNP, c.501G>C, which produces a single amino acid change (K>N at codon 167). Our study was aimed at elucidating whether the c.501G>C polymorphism changes the binding affinity of LOX-1 receptor altering its function. The presence of p.K167N mutation reduces ox-LDL binding and uptake. Ox-LDL activated extracellular signal-regulated kinases 1 and 2 (ERK 1/2) is inhibited. Furthermore, ox-LDL induced biosynthesis of LOX-1 receptors is dependent on the p.K167N variation. In human macrophages, derived from c.501G>C heterozygous individuals, the ox-LDL induced LOX-1 46 kDa band is markedly lower than in induced macrophages derived from c.501G>C controls. Investigation of p.K167N mutation through molecular dynamics simulation and electrostatic analysis suggests that the ox-LDL binding may be attributed to the coupling between the electrostatic potential distribution and the asymmetric flexibility of the basic spine residues. The N/N-LOX-1 mutant has either interrupted electrostatic potential and asymmetric fluctuations of the basic spine arginines

    Remodeling of the Purkinje Network in Congestive Heart Failure in the Rabbit

    Get PDF
    BACKGROUND: Purkinje fibers (PFs) control timing of ventricular conduction and play a key role in arrhythmogenesis in heart failure (HF) patients. We investigated the effects of HF on PFs. METHODS: Echocardiography, electrocardiography, micro-computed tomography, quantitative polymerase chain reaction, immunohistochemistry, volume electron microscopy, and sharp microelectrode electrophysiology were used. RESULTS: Congestive HF was induced in rabbits by left ventricular volume- and pressure-overload producing left ventricular hypertrophy, diminished fractional shortening and ejection fraction, and increased left ventricular dimensions. HF baseline QRS and corrected QT interval were prolonged by 17% and 21% (mean±SEMs: 303±6 ms HF, 249±11 ms control; n=8/7; P=0.0002), suggesting PF dysfunction and impaired ventricular repolarization. Micro-computed tomography imaging showed increased free-running left PF network volume and length in HF. mRNA levels for 40 ion channels, Ca2+-handling proteins, connexins, and proinflammatory and fibrosis markers were assessed: 50% and 35% were dysregulated in left and right PFs respectively, whereas only 12.5% and 7.5% changed in left and right ventricular muscle. Funny channels, Ca2+-channels, and K+-channels were significantly reduced in left PFs. Microelectrode recordings from left PFs revealed more negative resting membrane potential, reduced action potential upstroke velocity, prolonged duration (action potential duration at 90% repolarization: 378±24 ms HF, 249±5 ms control; n=23/38; P<0.0001), and arrhythmic events in HF. Similar electrical remodeling was seen at the left PF-ventricular junction. In the failing left ventricle, upstroke velocity and amplitude were increased, but action potential duration at 90% repolarization was unaffected. CONCLUSIONS: Severe volume- followed by pressure-overload causes rapidly progressing HF with extensive remodeling of PFs. The PF network is central to both arrhythmogenesis and contractile dysfunction and the pathological remodeling may increase the risk of fatal arrhythmias in HF patients

    Mesenchymal Stem Cell Responses to Bone-Mimetic Electrospun Matrices Composed of Polycaprolactone, Collagen I and Nanoparticulate Hydroxyapatite

    Get PDF
    The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL), 100% collagen I (col), and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA). Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications

    Evaluation of the bacterial diversity of Pressure ulcers using bTEFAP pyrosequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Decubitus ulcers, also known as bedsores or pressure ulcers, affect millions of hospitalized patients each year. The microflora of chronic wounds such as ulcers most commonly exist in the biofilm phenotype and have been known to significantly impair normal healing trajectories.</p> <p>Methods</p> <p>Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP), a universal bacterial identification method, was used to identify bacterial populations in 49 decubitus ulcers. Diversity estimators were utilized and wound community compositions analyzed in relation to metadata such as Age, race, gender, and comorbidities.</p> <p>Results</p> <p>Decubitus ulcers are shown to be polymicrobial in nature with no single bacterium exclusively colonizing the wounds. The microbial community among such ulcers is highly variable. While there are between 3 and 10 primary populations in each wound there can be hundreds of different species present many of which are in trace amounts. There is no clearly significant differences in the microbial ecology of decubitus ulcer in relation to metadata except when considering diabetes. The microbial populations and composition in the decubitus ulcers of diabetics may be significantly different from the communities in non-diabetics.</p> <p>Conclusions</p> <p>Based upon the continued elucidation of chronic wound bioburdens as polymicrobial infections, it is recommended that, in addition to traditional biofilm-based wound care strategies, an antimicrobial/antibiofilm treatment program can be tailored to each patient's respective wound microflora.</p

    Expression Profiling of Major Histocompatibility and Natural Killer Complex Genes Reveals Candidates for Controlling Risk of Graft versus Host Disease

    Get PDF
    Background: The major histocompatibility complex (MHC) is the most important genomic region that contributes to the risk of graft versus host disease (GVHD) after haematopoietic stem cell transplantation. Matching of MHC class I and II genes is essential for the success of transplantation. However, the MHC contains additional genes that also contribute to the risk of developing acute GVHD. It is difficult to identify these genes by genetic association studies alone due to linkage disequilibrium in this region. Therefore, we aimed to identify MHC genes and other genes involved in the pathophysiology of GVHD by mRNA expression profiling. Methodology/Principal Findings: To reduce the complexity of the task, we used genetically well-defined rat inbred strains and a rat skin explant assay, an in-vitro-model of the graft versus host reaction (GVHR), to analyze the expression of MHC, natural killer complex (NKC), and other genes in cutaneous GVHR. We observed a statistically significant and strong up or down regulation of 11 MHC, 6 NKC, and 168 genes encoded in other genomic regions, i.e. 4.9%, 14.0%, and 2.6% of the tested genes respectively. The regulation of 7 selected MHC and 3 NKC genes was confirmed by quantitative real-time PCR and in independent skin explant assays. In addition, similar regulations of most of the selected genes were observed in GVHD-affected skin lesions of transplanted rats and in human skin explant assays. Conclusions/Significance: We identified rat and human MHC and NKC genes that are regulated during GVHR in skin explant assays and could therefore serve as biomarkers for GVHD. Several of the respective human genes, including HLA-DMB, C2, AIF1, SPR1, UBD, and OLR1, are polymorphic. These candidates may therefore contribute to the genetic risk of GVHD in patients

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems

    Get PDF
    New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)

    Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases

    Get PDF
    Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics
    corecore