782 research outputs found
Irreversible thermodynamics of open chemical networks I: Emergent cycles and broken conservation laws
In this and a companion paper we outline a general framework for the
thermodynamic description of open chemical reaction networks, with special
regard to metabolic networks regulating cellular physiology and biochemical
functions. We first introduce closed networks "in a box", whose thermodynamics
is subjected to strict physical constraints: the mass-action law, elementarity
of processes, and detailed balance. We further digress on the role of solvents
and on the seemingly unacknowledged property of network independence of free
energy landscapes. We then open the system by assuming that the concentrations
of certain substrate species (the chemostats) are fixed, whether because
promptly regulated by the environment via contact with reservoirs, or because
nearly constant in a time window. As a result, the system is driven out of
equilibrium. A rich algebraic and topological structure ensues in the network
of internal species: Emergent irreversible cycles are associated to
nonvanishing affinities, whose symmetries are dictated by the breakage of
conservation laws. These central results are resumed in the relation between the number of fundamental affinities , that of broken
conservation laws and the number of chemostats . We decompose the
steady state entropy production rate in terms of fundamental fluxes and
affinities in the spirit of Schnakenberg's theory of network thermodynamics,
paving the way for the forthcoming treatment of the linear regime, of
efficiency and tight coupling, of free energy transduction and of thermodynamic
constraints for network reconstruction.Comment: 18 page
A method for sensitivity analysis to assess the effects of measurement error in multiple exposure variables using external validation data
Measurement error in self-reported dietary intakes is known to bias the association between dietary intake and a health outcome of interest such as risk of a disease. The association can be distorted further by mismeasured confounders, leading to invalid results and conclusions. It is, however, difficult to adjust for the bias in the association when there is no internal validation data
Principles guiding embryo selection following genome-wide haplotyping of preimplantation embryos.
STUDY QUESTION
How to select and prioritize embryos during PGD following genome-wide haplotyping?
SUMMARY ANSWER
In addition to genetic disease-specific information, the embryo selected for transfer is based on ranking criteria including the existence of mitotic and/or meiotic aneuploidies, but not carriership of mutations causing recessive disorders.
WHAT IS KNOWN ALREADY
Embryo selection for monogenic diseases has been mainly performed using targeted disease-specific assays. Recently, these targeted approaches are being complemented by generic genome-wide genetic analysis methods such as karyomapping or haplarithmisis, which are based on genomic haplotype reconstruction of cell(s) biopsied from embryos. This provides not only information about the inheritance of Mendelian disease alleles but also about numerical and structural chromosome anomalies and haplotypes genome-wide. Reflections on how to use this information in the diagnostic laboratory are lacking.
STUDY DESIGN, SIZE, DURATION
We present the results of the first 101 PGD cycles (373 embryos) using haplarithmisis, performed in the Centre for Human Genetics, UZ Leuven. The questions raised were addressed by a multidisciplinary team of clinical geneticist, fertility specialists and ethicists.
PARTICIPANTS/MATERIALS, SETTING, METHODS
Sixty-three couples enrolled in the genome-wide haplotyping-based PGD program. Families presented with either inherited genetic variants causing known disorders and/or chromosomal rearrangements that could lead to unbalanced translocations in the offspring.
MAIN RESULTS AND THE ROLE OF CHANCE
Embryos were selected based on the absence or presence of the disease allele, a trisomy or other chromosomal abnormality leading to known developmental disorders. In addition, morphologically normal Day 5 embryos were prioritized for transfer based on the presence of other chromosomal imbalances and/or carrier information.
LIMITATIONS, REASONS FOR CAUTION
Some of the choices made and principles put forward are specific for cleavage-stage-based genetic testing. The proposed guidelines are subject to continuous update based on the accumulating knowledge from the implementation of genome-wide methods for PGD in many different centers world-wide as well as the results of ongoing scientific research.
WIDER IMPLICATIONS OF THE FINDINGS
Our embryo selection principles have a profound impact on the organization of PGD operations and on the information that is transferred among the genetic unit, the fertility clinic and the patients. These principles are also important for the organization of pre- and post-counseling and influence the interpretation and reporting of preimplantation genotyping results. As novel genome-wide approaches for embryo selection are revolutionizing the field of reproductive genetics, national and international discussions to set general guidelines are warranted.
STUDY FUNDING/COMPETING INTEREST(S)
The European Union's Research and Innovation funding programs FP7-PEOPLE-2012-IAPP SARM: 324509 and Horizon 2020 WIDENLIFE: 692065 to J.R.V., T.V., E.D. and M.Z.E. J.R.V., T.V. and M.Z.E. have patents ZL910050-PCT/EP2011/060211-WO/2011/157846 (‘Methods for haplotyping single cells’) with royalties paid and ZL913096-PCT/EP2014/068315-WO/2015/028576 (‘Haplotyping and copy-number typing using polymorphic variant allelic frequencies’) with royalties paid, licensed to Cartagenia (Agilent technologies). J.R.V. also has a patent ZL91 2076-PCT/EP20 one 3/070858 (‘High throughout genotyping by sequencing’) with royalties paid
Antigenic Conservation of an Immunodominant Invariable Region of the VlsE Lipoprotein among European Pathogenic Genospecies of Borrelia burgdorferi SL
Lyme disease is caused by genetically divergent spirochetes, including 3 pathogenic genospecies: Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii. Serodiagnosisis complicated by this genetic diversity. A synthetic peptide (C6), based on the 26-mer invariable region (IR6) of the variable surface antigen of B. burgdorferi (VlsE), was used as ELISA antigen, to test serum samples collected from mice experimentally infected with the 3 genospecies and from European patients with Lyme disease. Regardless of the infecting strains, mice produced a strong antibody response to C6, which indicates that IR6 is antigenically conserved among the pathogenic genospecies. Twenty of 23 patients with culture-confirmed erythema migrans had a detectable antibody response to C6. A sensitivity of 95.2% was achieved, with serum samples collected from patients with well-defined acrodermatitis chronica atrophicans. Fourteen of 20 patients with symptoms of late Lyme disease also had a positive anti-IR6 ELISA. Thus, it is possible that C6 may be used to serodiagnose Lyme disease universall
A phenomenological approach to the simulation of metabolism and proliferation dynamics of large tumour cell populations
A major goal of modern computational biology is to simulate the collective
behaviour of large cell populations starting from the intricate web of
molecular interactions occurring at the microscopic level. In this paper we
describe a simplified model of cell metabolism, growth and proliferation,
suitable for inclusion in a multicell simulator, now under development
(Chignola R and Milotti E 2004 Physica A 338 261-6). Nutrients regulate the
proliferation dynamics of tumor cells which adapt their behaviour to respond to
changes in the biochemical composition of the environment. This modeling of
nutrient metabolism and cell cycle at a mesoscopic scale level leads to a
continuous flow of information between the two disparate spatiotemporal scales
of molecular and cellular dynamics that can be simulated with modern computers
and tested experimentally.Comment: 58 pages, 7 figures, 3 tables, pdf onl
What next for preimplantation genetic screening? High mitotic chromosome instability rate provides the biological basis for the low success rate
Preimplantation genetic screening is being scrutinized, as recent randomized clinical trials failed to observe the expected significant increase in live birth rates following fluorescence in situ hybridization (FISH)-based screening. Although these randomized clinical trials are criticized on their design, skills or premature stop, it is generally believed that well-designed and well-executed randomized clinical trials would resolve the debate about the potential benefit of preimplantation genetic screening. Since FISH can analyze only a limited number of chromosomal loci, some of the embryos transferred might be diagnosed as ‘normal’ but in fact be aneuploid for one or more chromosomes not tested. Hence, genome-wide array comparative genome hybridization screening enabling aneuploidy detection of all chromosomes was thought to be a first step toward a better design. We recently showed array screening indeed enables accurate determination of the copy number state of all chromosomes in a single cell. Surprisingly, however, this genome-wide array screening revealed a much higher frequency and complexity of chromosomal aberrations in early embryos than anticipated, with imbalances in a staggering 90% of all embryos. The mitotic error rate in cleavage stage embryos was proven to be higher than the meiotic aneuploidy rate and as a consequence, the genome of a single blastomere is not representative for the genome of the other cells of the embryo. Hence, potentially viable embryos will be discarded upon screening a single blastomere. This observation provides a biological basis for the failure of the randomized clinical trials to increase baby-take-home rates using FISH on cleavage stage embroys
Prospective comparison of two enzyme-linked immunosorbent spot assays for the diagnosis of Lyme neuroborreliosis: comparison of two ELISpot assays for neuroborreliosis
Commercial cellular tests are used to diagnose Lyme borreliosis (LB), but studies on their clinical validation are lacking. This study evaluated the utility of an in-house and a commercial enzyme-linked immunosorbent spot (ELISpot) assay for the diagnosis of Lyme neuroborreliosis (LNB). Prospectively, peripheral blood mononuclear cells (PBMCs) were isolated from patients and controls and analysed using an in-house Borrelia ELISpot assay and the commercial LymeSpot assay. B. burgdorferi B31 whole cell lysate and a mixture of outer surface proteins were used to stimulate the PBMCs and the numbers of interferon-gamma-secreting T cells were measured. Results were evaluated using receiver operating characteristic (ROC) curve analysis. Eighteen active and 12 treated LNB patients, 10 healthy individuals treated for an early (mostly cutaneous) manifestation of LB in the past and 47 untreated healthy individuals were included. Both assays showed a poor diagnostic performance with sensitivities, specificities, positive and negative predictive values ranging from 44.4-66.7%, 42.0-72.5%, 21.8-33.3% and 80.5-87.0%, respectively. The LymeSpot assay performed equally poorly when the calculation method of the manufacturer was used. Both the in-house and the LymeSpot assay are unable to diagnose active LNB or to monitor antibiotic treatment success.Immunogenetics and cellular immunology of bacterial infectious disease
Long-term prospects for the environmental profile of advanced sugar cane ethanol
This work assessed the environmental impacts of the production and use of 1 MJ of hydrous ethanol (E100) in Brazil in prospective scenarios (2020-2030), considering the deployment of technologies currently under development and better agricultural practices. The life cycle assessment technique was employed using the CML method for the life cycle impact assessment and the Monte Carlo method for the uncertainty analysis. Abiotic depletion, global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, and eutrophication were the environmental impacts categories analyzed. Results indicate that the proposed improvements (especially no-til farming-scenarios s2 and s4) would lead to environmental benefits in prospective scenarios compared to the current ethanol production (scenario s0). Combined first and second generation ethanol production (scenarios s3 and s4) would require less agricultural land but would not perform better than the projected first generation ethanol, although the uncertainties are relatively high. The best use of 1 ha of sugar cane was also assessed, considering the displacement of the conventional products by ethanol and electricity. No-til practices combined with the production of first generation ethanol and electricity (scenario s2) would lead to the largest mitigation effects for global warming and abiotic depletion. For the remaining categories, emissions would not be mitigated with the utilization of the sugar cane products. However, this conclusion is sensitive to the displaced electricity sources.Industrial Ecolog
- …