13 research outputs found

    Propagule composition regulates the success of an invasive seaweed across a heterogeneous seascape

    Get PDF
    Abstract Propagule pressure is acknowledged as a key determinant of invasion success. Nonetheless, the role of morphological or physiological attributes of propagules (i.e. their quality) in regulating invader establishment has been little explored. In particular, no study has investigated how the presence of propagules differing in quality within an inoculum influences establishment across heterogeneous landscapes. We experimentally tested the hypothesis that the quality (+Fronds+Rhizoids; +Fronds−Rhizoids; −Fronds+Rhizoids) and the diversity (1, 2 and 3 fragment types) of vegetative fragments of the seaweed Caulerpa taxifolia determine their establishment success across seascapes consisting of bare sediments and patches of the seagrass Zostera muelleri exposed to different disturbance intensities (control, seagrass canopy clipping and total removal). After 6 weeks, seaweed biomass, stolon and frond length, frond and rhizoid number were generally greater in unvegetated habitats (bare sediments and total seagrass removal) than full or reduced seagrass canopies. The type and the diversity of types of fragments inoculated had significant effects on the final biomass and morphological features of C. taxifolia only in vegetated habitats. In control plots, inocula of fragments retaining both fronds and rhizoids achieved higher biomass, developed longer stolons and more fronds. In canopy clipping plots, mixed inocula of +Fronds+Rhizoids and −Fronds+Rhizoids fragments had the greatest biomass and stolon length. Synthesis. Assessing how propagules differing in quality perform in different habitats might be not sufficient to draw a comprehensive picture of invasion risk, as their establishment can be modulated by both negative and positive interactions among them. Propagule composition should be, therefore, considered as a further dimension of propagule pressure. Our results also suggest that the relevance of specific propagule traits for invader establishment decreases from intact to degraded habitats. Considering propagule size in terms of amount of competent propagules, rather than an absolute measure, would refine our ability of predicting invasion risk across habitats differing in biotic or abiotic conditions

    Dominance of photo over chromatic acclimation strategies by habitat-forming mesophotic red algae

    Get PDF
    Funding was provided by a Leverhulme Trust Research Project grant no. (RPG-2018-113) to H.L.B., G.A.T. and I.D.W.S., an Engineering and Physical Sciences Research Council grant (EP/L017008/1) to G.A.T. and I.D.W.S., and a São Paulo Research Foundation (FAPESP) individual grant (#2016/14017-0) to G.H.P.-F.Red coralline algae are the deepest living macroalgae, capable of creating spatially complex reefs from the intertidal to 100+ m depth with global ecological and biogeochemical significance. How these algae maintain photosynthetic function under increasingly limiting light intensity and spectral availability is key to explaining their large depth distribution. Here, we investigated the photo- and chromatic acclimation and morphological change of free-living red coralline algae towards mesophotic depths in the Fernando do Noronha archipelago, Brazil. From 13 to 86 m depth, thalli tended to become smaller and less complex. We observed a dominance of the photo-acclimatory response, characterized by an increase in photosynthetic efficiency and a decrease in maximum electron transport rate. Chromatic acclimation was generally stable across the euphotic-mesophotic transition with no clear depth trend. Taxonomic comparisons suggest these photosynthetic strategies are conserved to at least the Order level. Light saturation necessitated the use of photoprotection to 65 m depth, while optimal light levels were met at 86 m. Changes to the light environment (e.g. reduced water clarity) due to human activities therefore places these mesophotic algae at risk of light limitation, necessitating the importance of maintaining good water quality for the conservation and protection of mesophotic habitats.Publisher PDFPeer reviewe

    Ecosystem engineer morphological traits and taxon identity shape biodiversity across the euphotic-mesophotic transition

    Get PDF
    Funding was provided by a Leverhulme Trust Research Project grant (no. RPG-2018-113) to H.L.B., G.A.T. and I.D.W.S., an Engineering and Physical Sciences Research Council grant (no. EP/L017008/1) to G.A.T. and I.D.W.S., and a São Paulo Research Foundation (FAPESP) individual grant (no. 2016/14017-0) to G.H.P.F.The euphotic-mesophotic transition is characterized by dramatic changes in environmental conditions, which can significantly alter the functioning of ecosystem engineers and the structure of their associated communities. However, the drivers of biodiversity change across the euphotic-mesophotic transition remain unclear. Here, we investigated the mechanisms affecting the biodiversity-supporting potential of free-living red coralline algae-globally important habitat creators-towards mesophotic depths. Across a 73 m depth gradient, we observed a general decline in macrofaunal biodiversity (fauna abundance, taxon richness and alpha diversity), but an increase in beta-diversity (i.e. variation between assemblages) at the deepest site (86 m depth, where light levels were less than 1% surface irradiance). We identified a gradient in abundance decline rather than distinct ecological shifts, driven by a complex interaction between declining light availability, declining size of the coralline algal host individuals and a changing host taxonomy. However, despite abundance declines, high between-assemblage variability at deeper depths allowed biodiversity-supporting potential to be maintained, highlighting their importance as coastal refugia.PostprintPeer reviewe

    Microbial communities in sediment from Zostera marina patches, but not the Z. marina leaf or root microbiomes, vary in relation to distance from patch edge

    No full text
    Background Zostera marina (also known as eelgrass) is a foundation species in coastal and marine ecosystems worldwide and is a model for studies of seagrasses (a paraphyletic group in the order Alismatales) that include all the known fully submerged marine angiosperms. In recent years, there has been a growing appreciation of the potential importance of the microbial communities (i.e., microbiomes) associated with various plant species. Here we report a study of variation in Z. marina microbiomes from a field site in Bodega Bay, CA. Methods We characterized and then compared the microbial communities of root, leaf and sediment samples (using 16S ribosomal RNA gene PCR and sequencing) and associated environmental parameters from the inside, edge and outside of a single subtidal Z. marina patch. Multiple comparative approaches were used to examine associations between microbiome features (e.g., diversity, taxonomic composition) and environmental parameters and to compare sample types and sites. Results Microbial communities differed significantly between sample types (root, leaf and sediment) and in sediments from different sites (inside, edge, outside). Carbon:Nitrogen ratio and eelgrass density were both significantly correlated to sediment community composition. Enrichment of certain taxonomic groups in each sample type was detected and analyzed in regard to possible functional implications (especially regarding sulfur metabolism). Discussion Our results are mostly consistent with prior work on seagrass associated microbiomes with a few differences and additional findings. From a functional point of view, the most significant finding is that many of the taxa that differ significantly between sample types and sites are closely related to ones commonly associated with various aspects of sulfur and nitrogen metabolism. Though not a traditional model organism, we believe that Z. marina can become a model for studies of marine plant-microbiome interactions

    Red algae acclimate to low light by modifying phycobilisome composition to maintain efficient light harvesting

    Get PDF
    Abstract Background Despite a global prevalence of photosynthetic organisms in the ocean’s mesophotic zone (30–200+ m depth), the mechanisms that enable photosynthesis to proceed in this low light environment are poorly defined. Red coralline algae are the deepest known marine benthic macroalgae — here we investigated the light harvesting mechanism and mesophotic acclimatory response of the red coralline alga Lithothamnion glaciale. Results Following initial absorption by phycourobilin and phycoerythrobilin in phycoerythrin, energy was transferred from the phycobilisome to photosystems I and II within 120 ps. This enabled delivery of 94% of excitations to reaction centres. Low light intensity, and to a lesser extent a mesophotic spectrum, caused significant acclimatory change in chromophores and biliproteins, including a 10% increase in phycoerythrin light harvesting capacity and a 20% reduction in chlorophyll-a concentration and photon requirements for photosystems I and II. The rate of energy transfer remained consistent across experimental treatments, indicating an acclimatory response that maintains energy transfer. Conclusions Our results demonstrate that responsive light harvesting by phycobilisomes and photosystem functional acclimation are key to red algal success in the mesophotic zone
    corecore