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ABSTRACT
Background. Zostera marina (also known as eelgrass) is a foundation species in
coastal and marine ecosystems worldwide and is a model for studies of seagrasses (a
paraphyletic group in the order Alismatales) that include all the known fully submerged
marine angiosperms. In recent years, there has been a growing appreciation of the
potential importance of the microbial communities (i.e., microbiomes) associated with
various plant species. Here we report a study of variation in Z. marina microbiomes
from a field site in Bodega Bay, CA.
Methods. We characterized and then compared the microbial communities of root,
leaf and sediment samples (using 16S ribosomal RNA gene PCR and sequencing) and
associated environmental parameters from the inside, edge and outside of a single
subtidal Z. marina patch. Multiple comparative approaches were used to examine
associations betweenmicrobiome features (e.g., diversity, taxonomic composition) and
environmental parameters and to compare sample types and sites.
Results. Microbial communities differed significantly between sample types (root,
leaf and sediment) and in sediments from different sites (inside, edge, outside).
Carbon:Nitrogen ratio and eelgrass density were both significantly correlated to
sediment community composition. Enrichment of certain taxonomic groups in each
sample type was detected and analyzed in regard to possible functional implications
(especially regarding sulfur metabolism).
Discussion. Our results are mostly consistent with prior work on seagrass associated
microbiomes with a few differences and additional findings. From a functional point
of view, the most significant finding is that many of the taxa that differ significantly
between sample types and sites are closely related to ones commonly associated with
various aspects of sulfur and nitrogen metabolism. Though not a traditional model
organism, we believe that Z. marina can become a model for studies of marine plant-
microbiome interactions.
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INTRODUCTION
The seagrass, Zostera marina, is a foundation species in protected bays and estuaries
throughout the temperate northern hemisphere. Seagrasses are fully submerged marine
angiosperms and are a paraphyletic group comprised of three lineages in the order
Alismatales that convergently adapted to the marine environment between 70 and 100
million years ago (Les, Cleland & Waycott, 1997). There are only approximately 60 species
of seagrass compared to the 250,000 species of terrestrial angiosperms, a testament to the
strict selective pressure posed by re-entry to the marine environment (Orth et al., 2006).
Seagrass patches serve as habitat and nursery grounds for many marine species, play key
roles in nutrient cycling and carbon sequestration, and serve to protect the coastline from
erosion (Williams & Heck Jr, 2001). Z. marina populations, like those of many seagrass
species, are negatively affected by climate change, pollution and habitat destruction and
so far, restoration efforts have been costly and ineffective (Orth et al., 2006). As a result,
Z. marina is vulnerable to habitat fragmentation and loss.

The work described here was originally focused on a phenomenon known as ‘‘edge
effects’’ in which the border between habitats is intermediate in abiotic conditions from
the center of either adjacent habitat and thus the biotic composition of the border
habitat, or edge, may differ from that of interior, intact habitat. Edges often support a
mixture of organisms from two adjacent habitats (Fox et al., 1997; Davies-Colley, Payne
& Elswijk, 2000), but may be abiotically unsuitable for species found in the center of
either habitat. Increased predation and invasion by non-native species can also be a
common feature of edges (Paton, 1994; Fox et al., 1997;Harrison & Bruna, 1999; Flaspohler,
Temple & Rosenfield, 2001). Prior work on seagrasses have shown edge effects on species
abundances (Smith et al., 2008; Smith et al., 2011; Tanner, 2005) and abiotic conditions
such as turbulence (Granata et al., 2001; Folkard, 2005), carbon stocks (Ricart et al., 2015)
and organic matter deposition (Duarte & Sand-Jensen, 1990; Cebrián et al., 2000). Here we
investigate whether such edge effects are evident in the microbiota found in, on and near
Z. marina plants.

Our interest in the microbiota for this study is driven by our overarching goal of
developing Z. marina as a model for studies of microbial communities associated with
marine plants. Although we speculate that plant microbe interactions are important
for seagrasses, little is known about how the roles of microbial communities associated
with marine plants may affect plant health and what abiotic and biotic factors affect the
composition of these communities. Terrestrial plants, like Arabidopsis (Lundberg et al.,
2012), corn (Peiffer et al., 2013; Bouffaud et al., 2014), rice (Peiffer et al., 2013; Edwards et
al., 2015) and poplar (Beckers et al., 2016) have been shown to have distinct microbial
communities on the inside (endophytes) and on the surface (epiphytes) of plant leaves and
roots, as well as in the surrounding soil or sediment (rhizosphere) (Lundberg et al., 2012).
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These communities can vary across different stages of plant development (Chaparro,
Badri & Vivanco, 2014) and with local environmental conditions. In terrestrial systems
the main drivers of plant associated microbial community composition are considered
to be environmental factors, like soil particle size, pH and moisture content, as well
as host plant species (Aleklett et al., 2015; Lakshmanan, 2015). Thus, examining eelgrass
microbiota across a known environmental gradient from the center to the outside of a
patch has the potential to provide insights into factors that shape the eelgrass microbiome,
the full community of microorganisms associated with eelgrass. Recently a few culture-
independent surveys of seagrass microbiomes have been published and these provide good
initial reference points for our work here (Jiang et al., 2015; Sun et al., 2015; Cúcio et al.,
2016;Mejia et al., 2016). Although, these studies have similar big picture findings, there are
small differences in microbiome composition between them and thus further teasing apart
of the factors that shape seagrass microbiomes is necessary and important work.

In this study, we characterized and then compared the epiphytic and rhizospheric
bacterial communities of eelgrass using root, leaf and sediment samples obtained from the
inside, edge and outside of a single subtidal Z. marina patch. We focused on characterizing
the bacterial and archaeal members of the microbiome in each of these samples using
high throughput sequencing of 16S ribosomal gene PCR libraries. We focus in particular
on the following questions: What is the general taxonomic composition of the Z. marina
microbiome? Are there changes in sediment microbial community composition or in
biodiversity at the patch edge and, if so, what factors are driving observed differences,
environmental abiotic factors or presence/absence of Z. marina? This analysis reveals
multiple novel insights into the general structure of the Z. marinamicrobiome and lays the
groundwork for further studies.

MATERIALS & METHODS
Sample collection
We collected leaf, root and sediment samples for microbiome analysis from 0.25 m2

quadrats (n= 4) located in the interior (2.5 m from the edge), on the edge (but within the
eelgrass habitat) and outside (2.5m from the edge) of a single shallow subtidal eelgrass patch
in Bodega Bay, CA (GPS: 38.319435, −123.053838) during the summer of 2013. Quadrats
were positioned 2.5 m from each other parallel to the patch’ edge. Samples were collected
during low tide (±0.5 m water depth) at night (11 PM). For quadrats located at the center
or edge of the eelgrass patch, one eelgrass shoot was sampled and directly separated into
root and shoot tissue. The root tissue consisted of one entire root bundle sampled, the leaf
tissue consisted of a clipped leaf of± 3 cm in length positioned at about half way along the
shoot length (±20 cm from the base). For each quadrat, sediment samples were collected
at two sediment depths, 0.5 cm or less and 3 cm deep, from randomly selected locations
within the quadrats. Microbial samples were directly stored on ice and transported to the
laboratory within one hour where samples were frozen at −20 ◦C until further analysis.

Environmental data and the samples used for microbiome analysis were collected
simultaneously. For each quadrat, eelgrass density was estimated by direct count.
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Temperature, pH, salinity and dissolved oxygen were measured at 20 cm above the
sediment with a YSI 556 handheld multimeter (YSI Inc., Yellow Springs, OH, USA), at a
similar height as the shoot tissue was sampled. Sediment chemical and physical properties
were assessed by separately coring the top 4 cm of sediment (10 cm diameter, taken twice
within a quadrat and combined for analysis), to correspond with the sediment layer most
influenced by the eelgrass roots. Sediment was dried (three days at 40 ◦C), mixed, sieved
(sieve sizes: 710, 500, 355, 250, 180, 90 and 30 µm) and particle size fractions were weighed
to investigate particle size distribution. A portion of the mixed sediment samples (±50 g)
was separately analyzed for total organic carbon (TOC), total inorganic carbon (TIC) and
Carbon:Nitrogen (C:N) ratio by the UC Davis Analytical Laboratory.

Molecular methods
DNA was extracted from leaf (n= 8), root (n= 8) and both shallow (n= 12) and deep
sediment (n= 12) samples as well as from a kit control (n= 1) with the PowerSoil
DNA Isolation kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA) according to the
manufacturer’s protocol. For the DNA extractions, root and leaf tissues were placed directly
into PowerBead tubes from the freezer without grinding. Microbial 16S rRNA genes were
amplified using a two-step protocol targeting the V4 region using the ‘‘universal’’ 515F
and 806R primers (Caporaso et al., 2012). The primer set was modified to include Illumina
adapters and barcode sequences using a dual indexing approach as in Lang, Eisen & Zivkovic
(2014). The 41 samples described in this paper were multiplexed with 103 samples from
other experiments, for a total of 144 samples on the run. Libraries were sequenced by the
UC Davis Genome Center Core Facilities on an Illumina MiSeq (Illumina, Inc., San Diego,
CA, USA) to generate 250 bp paired-end reads.

Sequence processing
A custom in-house script was used to demultiplex, quality check and merge paired reads
(https://github.com/gjospin/scripts/blob/master/Demul_trim_prep.pl). The resulting
sequences were analyzed using the Quantitative Insights Into Microbial Ecology (QIIME)
v. 1.9.0 workflow (Caporaso et al., 2010).

For a detailed walkthrough of the following analysis using QIIME, see the IPython
notebook (http://nbviewer.jupyter.org/gist/casett/86da7fc8749d27574f183498df65134a).

The sequencing run for this project included samples from other projects. In total, for
the entire run, 14,163,470 reads passed quality filtering (Q20). Of these reads, 4,573,318
were associated with the 41 samples for this project. Of the 4,573,318 reads for this project,
4,212,549 merged successfully (92.11%). The sample with the lowest number of sequences
after merging was the negative control with 444 sequences, the next lowest sample, BB039,
had 22,897 sequences, approximately a fifty-fold increase. The most abundant sequence in
the negative control was chloroplast DNA, and thus, we conclude that these 444 sequences
were likely the result of contamination from other samples during sequencing or molecular
analyses. We considered removing shared operational taxonomic units (OTUs) or 100
percent identical DNA sequences between the negative control and our environmental
samples, but determined both of these actions to be too stringent on the dataset when
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taking into account the abundance of the OTU’s/DNA sequences in the samples and the
number of reads in the negative control. Instead the negative control was simply removed
from downstream analysis.

A total of 4,976 chimeras were identified using USEARCH v. 6.1 and were filtered out.
The remaining sequences were clustered using the open reference approach into OTUs
at 97 percent similarity using UCLUST (Edgar, 2010). Taxonomy was assigned using
the assign_taxonomy.py QIIME script with the GreenGenes database (v.13_8) (DeSantis
et al., 2006) using UCLUST. Further filtering was performed using the QIIME scripts,
filter_taxa_from_otu_table.py and filter_otus_from_otu_table.py, to remove chloroplast
DNA, mitochondrial DNA and singletons. Reads classified as ‘‘Unassigned’’ at the domain
level were also removed from downstream analysis. After these filtering steps, the lowest
number of sequences in a sample dropped to 3,277. This reduction in the number of
sequence reads can be largely attributed to the removal of Z. marina chloroplast DNA from
the leaf and root samples.

To aid in statistical comparison between different sample types (leaf, root, sediment),
we subset our 16S rDNA sequences to a minimum sequence count of 3,277 to retain the
maximum number of samples. However, when comparing only sediment samples, the 16S
rDNA sequences were randomly subset to 20,000 sequences using the single_rarefaction.py
QIIME script.

Data visualization and statistical analyses
Data visualization was performed exclusively in R and statistical analyses were performed
using a combination of QIIME scripts and R (R Core Team, 2016). For analysis done in
R, the rarefied OTU tables were converted to json format and exported for analysis using
the ggplot2 (Wickham, 2009), vegan (Dixon, 2003) and phyloseq (McMurdie & Holmes,
2013) packages. Initial analysis indicated no significant differences between the microbial
communities associated with shallow (0.5 cm or less) and deep (3 cm) sediment samples,
thus sediment depth was not considered further here. We describe the different types of
analyses below.

• Intra-sample (alpha) diversity. We were interested in if significant differences existed
between the intra-sample (alpha) diversities (richness, evenness) of the microbial
communities associated with different sample types (leaf, root, sediment) and different
sediment locations (inside, edge, outside). We calculated the following diversity metrics:
Chao1 (Chao, 1984), ObservedOTUs, Shannon (Shannon & Weaver, 1949) and Simpson
Indices (Simpson, 1949) in R. To determine if there were significant differences between
the alpha diversities of different sample types and different sediment locations, we first
performed Kruskal–Wallis tests. We then implemented Bonferroni corrected post-hoc
Dunn tests to identify which pairwise comparisons were driving differences.
• Inter-sample (beta) diversity. We assessed the inter-sample (beta) diversities of the
microbial communities associated with different sample groupings (sample type,
location, etc) and if there were any significant correlations between environmental
variables and community dissimilarity.Weused bothUnifrac (weighted andunweighted)
(Lozupone et al., 2007; Hamady, Lozupone & Knight, 2010) and Bray–Curtis (Bray
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& Curtis, 1957) dissimilarities calculated in R using phyloseq. These dissimilarities
were then plotted using principal coordinate analysis (PCoA) and non-metric
multidimensional scaling (NMDS)methods.Multiple tests were then performed on these
beta-diversity results. To test for significant differences in centroids between different
sample groupings (sample type, location, etc.) PERMANOVA tests were performed using
the adonis function from the vegan package in R with 9,999 permutations (Anderson,
2001). PERMANOVA tests can be sensitive to differences in dispersion when using
abundance-based distance matrices (Warton, Wright & Wang, 2012), but are more
robust than other tests, especially for balanced designs (Anderson & Walsh, 2013). To
test for differences in mean dispersions between different groupings, the betadisper and
permutest functions from the vegan package in R were used with 999 permutations.
To test for correlations between the Bray Curtis dissimilarities of our samples and
the environmental factors (C:N ratio, pH, etc) measured, euclidean distances were
calculated in R using vegan and Mantel tests were performed using 9,999 permutations.
The supervised_learning.py QIIME script was used to see if a random forest classifier
could differentiate between sample type or sediment location using leave-one-out cross
validation and 1,000 trees.
• Taxonomic variation. To determine if the mean relative abundance of taxonomic
orders varied significantly between different sample types and sediment locations, we
first used the summarize_taxa.py QIIME script to remove rare OTUs (less than one
percent of total abundance) and to collapse OTUs at the Order level. We then used the
group_significance.py QIIME script on the resulting OTU table to test for differences
using Bonferroni corrected Kruskal–Wallis tests with 1000 permutations. We removed
the rare OTUs, as suggested in the documentation for the groups_significance.py QIIME
script, to avoid spurious significance from very low abundance OTUS, to simplify
analyses and to focus on abundant organisms and overall patterns.
• Environmental variation. To determine if environmental factors varied significantly
between different locations in the eelgrass patch (inside, edge, outside), ANOVA tests
were performed in R for each factor. The post-hoc Tukey’s Honest Significant Difference
(HSD) test was performed in R for factors found significantly different by the ANOVA
(Tukey, 1953; Kramer, 1956; Kramer, 1957).

RESULTS & DISCUSSION
Diversity metrics I: intra-sample variation between sample types and
locations
Alpha diversity is greater in the sediment than in the leaves and roots (p< 0.001) for a
variety of metrics including observed number of OTUs, Chao1, Shannon and Simpson
(Fig. 1). However, there is no difference in alpha diversity between leaf and root samples
(p> 0.05) (Table S1 ). This is not altogether unexpected as in terrestrial systems soil
has been observed to have increased diversity compared to host associated sample types
(Edwards et al., 2015). There is conflict between the diversity metrics when determining if
the intra-sample diversity of sediment at different locations (inside, edge, outside) varies
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Figure 1 Alpha diversity across samples. Four alpha diversity metrics, observed number of OTUs,
Chao1, the Shannon and Simpson diversity indices, are shown as boxplots for (A) different sample types
(leaf, root, sediment) and for (B) sediment from different locations (inside, edge, outside).

(Table S2). Two of the metrics, observed number of OTUs and Chao1, indicate greater
diversity outside compared to inside the patch (p< 0.05). The non-significant metrics,
the Shannon and Simpson indices, account for both richness and evenness and are less
sensitive to rare taxa than richness only metrics (Bent & Forney, 2008). Thus, one possible
explanation for the difference in diversity between the inside and outside sediment is
an increased number of rare taxa in sediment from outside the patch. No significant
differences were found between the alpha diversity of leaves and roots between the inside
and edge of the eelgrass patch.

Diversity metrics II: inter-sample variation between sample types and
locations
Distinct microbial communities were detected in association with Z. marina leaves, roots
and sediment (Fig. 2). PERMANOVA tests performed on three different beta diversity
metrics, weighted UniFrac, unweighted UniFrac and Bray–Curtis Dissimilarity, found
these communities to be significantly different from each other with p= 0.0001 (Table 1).
Root and leaf associated communities were found to have more with-in group variance, or
dispersion, than sediment communities (p= 0.001), which could indicate that stabilizing
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Figure 2 Principal coordinates analysis (PCoA) of microbial communities based on weighted Unifrac
distances. Samples are colored by sample type (leaf, root, sediment) with different shapes for location (in-
side, edge, outside).

Table 1 Permanova results. Comparing microbial community composition between different sample
types (leaf, root, sediment) and locations (inside, edge, outside) using multiple beta diversity metrics.

Category Diversity metric Pseudo-F R2 P (perm)

Location Weighted UniFrac 2.22 0.107 0.0213
Unweighted UniFrac 1.91 0.0938 0.0043
Bray Curtis 2.82 0.133 0.0009

Sample type Weighted UniFrac 13.75 0.426 0.0001
Unweighted UniFrac 6.16 0.249 0.0001
Bray Curtis 9.53 0.34 0.0001

LocXType Weighted UniFrac 1.98 0.0541 0.0426
Unweighted UniFrac 1.19 0.0455 0.1586
Bray Curtis 1.482 0.0458 0.0795

selection is acting on these sediment communities. Random forest analysis further validated
the observed differences between leaves, roots and sediment microbial communities
(Table S3). The classifier had an estimated error of 5% (versus a baseline error of 40%) and
correctly identified all leaf samples (n= 8) and all sediment samples (n= 24). The classifier
did misclassify two of the root samples (n= 8) as leaves, but this is not unexpected
as these two samples also appear to cluster more closely with the leaf samples when
visualized using Principal Coordinates Analysis (PCoA) (Fig. 2). The reason that these root
samples cluster more closely with the leaf samples may be due to which root bundles were
sampled; preliminary results indicate that the microbiota associated with the roots can vary
depending on the proximity of the root to the base of the leaf, with roots closer to the base
appearing more ‘‘leaf-like’’ (HE Holland-Moritz et al., 2017, unpublished data).
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Figure 3 Principal coordinates analysis (PCoA) of microbial communities in sediment based on
weighted Unifrac distances. Samples are colored by location (inside, edge, outside).

Table 2 Sediment PERMANOVA results. Comparing sediment microbial community composition be-
tween different locations (inside, edge, outside) and eelgrass densities using multiple beta diversity met-
rics.

Category Diversity metric Pseudo-F R2 P (perm)

Location Weighted UniFrac 8.69 0.453 0.0001
Unweighted UniFrac 2.92 0.217 0.0001
Bray Curtis 8.01 0.433 0.0001

Density Weighted UniFrac 2.81 0.551 0.0002
Unweighted UniFrac 1.51 0.398 0.0001
Bray Curtis 2.86 0.555 0.0001

To determine if there was a difference in community composition at the eelgrass patch
edge relative to the inside or outside of the patch, beta diversity metrics were calculated for
the sediment microbial communities. As can be seen in Fig. 3, these diversity metrics show
the communities clustering by sampling location (inside, edge, outside). PERMANOVA
tests indicate that these clusters are significantly different between locations (p= 0.0001)
and also for eelgrass shoot densities (p< 0.0002) (Table 2).However, leaf and rootmicrobial
communities do not differ significantly based on sampling location, possibly indicating that
these plant tissue associated communities are more stable than the sediment communities
in regards to location. Whereas sediment communities, although distinct when associated
with eelgrass, may be under less selection from the host plant. One possible explanation
for the correlation between the sediment communities and eelgrass shoot density may be
the release of exudates and oxygen by the roots of the eelgrass, which would increase in
concentration with eelgrass density.

Ettinger et al. (2017), PeerJ, DOI 10.7717/peerj.3246 9/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.3246


Figure 4 Average relative abundance of taxonomic groups associated with each sample type (leaf, root,
sediment).OTUs are shown grouped by taxonomic order and colored by taxonomic class. Only orders
with a mean abundance of at least one percent are shown here. The bars represent the standard error of
the mean.

Random forest analysis confirmed differences between sediment microbial communities
taken from the inside of the patch, the edge and unvegetated sediment from outside the
patch (Table S4). The classifier had an estimated error of 12.5% (versus a baseline error
of 66.7%) and correctly identified all of the unvegetated sediment (n= 8). The classifier
did mistakenly classify one sample from the edge (n= 8) as being from the inside of the
patch and two samples from the inside of the patch (n= 8) as being from the edge. In
Fig. 3, there is some overlap in the clustering of sediment from the inside and edges of
patches which might account for these misclassifications.

Major patterns in community composition of the leaves, roots and
rhizosphere sediment
The analysis of diversity metrics presented above shows that there are distinct communities
associated with leaves and roots, and these both differ from the sediment, whereas location
effects are weaker. We therefore examined in more detail the taxonomic composition
and possible functional roles of the microbes on Z. marina leaves, roots and rhizosphere
sediment (sediment from the inside and edge of the eelgrass patch). We summarize our
findings regarding this here.

Figure 4 shows the average relative abundance of different orders of bacteria for
leaves, roots and sediment. On leaves, the most abundant orders were Clostridiales,
Bacteroidales, Rhodobacterales, Flavobacterales, Saprospirales, Thiotrichales andUnidentified
Gammaproteobacteria. On roots, the most abundant orders were Campylobacterales,
Bacteroidales, Clostridiales, Desulfobacterales, Flavobacteriales and Desulfuromonadales. In
the rhizosphere sediment, the most abundant orders were Bacteroidales, Flavobacteriales,
Desulfobacterales, Thiotrichales, Clostridiales and Alteromonadales.
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We also examined the overall patterns in our results at the class level (Table S5).
For leaves, the most abundant class of epiphytes observed was Gammaproteobacteria
(20.5 ± 7.3%). Other abundant classes included Clostridia (16.5 ± 12%), Bacteriodia
(12.6 ± 8.6%), Alphaproteobacteria (11.4 ± 8.5%), Flavobacteria (7.8 ± 4.7%) and
Saprospirae (7.7 ± 4.2%). For roots, the dominant class associated with the roots were
Epsilonproteobacteria (17.9±15.5%). Other abundant classes observed on the roots include
Deltaproteobacteria (13.4 ± 11.3%), Bacteriodia (12.8 ± 8.8%), Gammaproteobacteria
(12.6 ± 11%), Clostridia (8 ± 8.4%), Flavobacteriia (6.1 ± 6.1%) and Alphaproteobacteria
(4.8 ± 6.3%). In the rhizosphere sediment, the dominant class was Gammaproteobacteria
(18.2 ± 3.4%), as it was on the leaves. Other abundant classes found in the rhizosphere
sediment include Deltaproteobacteria (14.9 ± 2.6%), Bacteriodia (13.3 ± 2.3%),
Flavobacteriia (9.3 ± 3.4%), Clostridia (5.1 ± 3.3%) and Anaerolineae (3.9 ± 1.6%).

The summary results above allow a comparison to findings from a recent study on the
rhizosphere sediment microbiomes of three seagrass species, including Z. marina, Cúcio et
al., 2016. We chose to focus our comparison on the Cúcio et al. study because it is one of the
more comprehensive culture independent studies of seagrasses. Overall, there are general
similarities and differences when comparing the class-level patterns between the studies.
The authors reported that the most abundant classes were Gammaproteobacteria (32–
38% depending on the species sampled), Deltaproteobacteria (23–26%), and Bacteroidia
(6–7%). These were the three most abundant classes in our sediment samples as well,
but at different relative abundances (see above). These differences could be due to true
differences in microbiomes in the sediments sampled, or due to the use of different primer
sets, extraction methods, and sample collection strategies (among many other differences).

When examined at higher taxonomic ranks, the microbiome of the leaves of Z. marina
shares some similarities with the microbiomes of various marine algae (e.g., kelp and
seaweeds), withGammaproteobacteria being themost abundant class in both cases (Hollants
et al., 2013). However, these similarities are not seen at lower ranks (e.g., order, family,
genus). This finding is similar to what has been observed between different marine algal
microbiomes, with similarities observed at higher, but not lower taxonomic levels (Hollants
et al., 2013; Egan et al., 2013). This is further supported by a recent study, which focused
on surface-associated communities, that observed that the microbiomes of seagrass and
seaweed species were host specific, but had broad-scale functional similarities (Roth-Schulze
et al., 2016).

Differences in microbial communities between sample types (leaves,
roots and rhizosphere sediment) and possible functional implications
We used a Bonferroni corrected Kruskall–Wallis test to test for differences in relative
abundance of the orders between sample types. This showed that Saprospirales,Thiotrichales,
Rhodobacterales, Desulfobacterales, Desulfuromonadales, Marinicellales, Spirochaetales,
Chromatiales and Campylobacterales are significantly different between sample types
(p< 0.05). Campylobacterales, Desulfobacterales, Spirochaetales and Desulfuromonadales
were enriched on Z. marina roots. Thiotrichales, Rhodobacterales and Saprospirales were
enriched on the leaves. Thiotrichales, Marinicellales, Chromatiales, Desulfobacterales and
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Spirochaetales were enriched in the rhizosphere. We note that many of the taxa that
differ significantly between communities are closely related to ones commonly associated
with various aspects of sulfur and nitrogen metabolism. This is interesting because prior
studies have suggested that nitrogen and sulfur metabolism are critical functions for the
seagrass associated microbiome (Lovell, 2002). For example, acquisition of nitrogen (in its
many forms) is frequently a limiting factor for the health of plants, including seagrasses
(Short, 1987; Elser et al., 2007) and associations with microbes are frequently critical for
such acquisition (Welsh, 2000; Nielsen et al., 2001). In addition, since the reduced sulfur
compounds that accumulate in aquatic sediments are known phytotoxins (Lamers et al.,
2013), it is thought that sulfur metabolizing microbes could play important roles in aiding
seagrass survival in such sediments (Barber & Carlson, 1993; Terrados et al., 1999; Erskine &
Koch, 2000; Van der Heide et al., 2012). Sulfur and nitrogen metabolism are not necessarily
independent—it has been postulated that sulfate-reducing bacteria may be responsible for
most of the nitrogen fixation that occurs in seagrass sediments (Capone, 1982).

Given this context, we discuss several of the specific taxa that differ between samples
and their possible connection to nitrogen and/or sulfur metabolism below. For example,
Campylobacterales, specifically Sulfurimonas species, from the class Epsilonproteobacteria,
were enriched on Z. marina roots. Previous studies of Spartina (Thomas et al., 2014) and
Z. marina (Jensen, Kühl & Priemé, 2007) also found enrichment of Epsilonproteobacteria
on roots relative to the surrounding sediment. All known Sulfurimonas species are sulfur-
oxidizing chemolithoautotrophs, can perform denitrification and are postulated to play
significant roles in biogeochemical cycling in marine sediments (Campbell et al., 2006).
Members of Campylobacterales have previously been identified as nitrogen fixers when
isolated from Spartina roots (McClung & Patriquin, 1980). Additionally, Campylobacterales
and Desulfobacterales, known sulfur-reducing bacteria, have been previously found to
be abundant in association with plants from brackish habitats (e.g., mangroves—Gomes
et al., 2010). Rhodobacterales which are enriched on the Z. marina leaves in our study,
are purple nonsulfur bacteria, that have been identified as primary surface colonizers
in marine habitats and have been shown to have the ability to fix nitrogen (Palacios &
Newton, 2005; Dang et al., 2008). Desulfobacterales and Rhodobacterales species have been
previously found in association with the tropical seagrass Thalassia hemprichii (Jiang et
al., 2015). Thiotrichales, which are enriched in the sediment, are generally filamentous
sulfur-oxidizing bacteria (Garrity, Bell & Lilburn, 2005) and are postulated to be dominant
sulfur-oxiders in salt marsh sediments (Thomas et al., 2014).

Variation in sediment microbial communities between locations
The analysis of diversity metrics reported above also showed that there are significant
differences in the sediment microbial communities from different locations (inside a
eelgrass patch, the edge of a patch and outside of a patch). We therefore examined in more
detail the taxonomic groups that differ significantly between sediment locations and their
potential functional roles (Fig. 5).

Bacteroidales, Myxococcales, Thiotrichales and Chromatiales are significantly different
between locations with a Bonferroni corrected Kruskall–Wallis test (p< 0.01). Thiotrichales
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Figure 5 Average relative abundance of taxonomic groups associated with sediment from each loca-
tion (inside, edge, outside).Operational taxonomic units (OTUs) are shown grouped by taxonomic order
and are colored by taxonomic class. Only orders with a mean relative abundance of at least one percent are
shown. Bars represent the standard error of the mean.

and Chromatiales are enriched outside of Z. marina patches in the unvegetated sediment
compared to the inside or edge of patches. In contrast, Bacteroidales and Myxococcales are
enriched in the rhizosphere sediment inside and at the edge of eelgrass patches compared
to the outside. The functional significance of these differences is unclear but we note a
few things here. First, Thiotrichales and Chromatiales are common taxa in other marine
and brackish sediments including those associated with various plants (e.g., Thomas et al.,
2014). This is thought be reflective of a role in sulfur oxidation (see discussion above).
Some studies have indicated that these taxa are associated with plants (e.g., seagrasses in
Portugal Cúcio et al., 2016). However, other studies have indicated that these are found
more in the sediment near plants but not specifically associated with plants (Thomas et
al., 2014). Myxococcales, commonly found in freshwater and marsh sediments, includes
microorganisms known to be involved in organic matter degradation (Bowen et al., 2012;
Kou et al., 2016; Cleary et al., 2016). The abundance of Myxococcales inside the eelgrass
patch aligns with the expectation of higher prevalence of organic matter degradation inside
the patch as opposed to surrounding unvegetated sediment.

Environmental drivers of sediment communities
In addition to investigating the taxonomic composition of the microbial communities of
sediment collected from the inside, edge and outside of eelgrass patches, we decided to test
for correlations between observed community differences and environmental factors to
elucidate key factors that may be driving the microbial communities in eelgrass patches.

A variety of abiotic factors were significantly different between locations including C:N
ratio, TIC, dissolved oxygen, pH and sediment size fractions 710 µm and 63 µm (ANOVA,
p< 0.05) (Tables S6 and S7). Unsurprisingly, eelgrass shoot density was significantly
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Figure 6 Relationship between environmental data andmicrobial communities.Non-metric multi-
dimensional scaling (NMDS) of Bray Curtis dissimilarities of microbial communities found in sediment
samples are shown here colored by location (inside, edge, outside). Environmental factors (p < 0.055,
ANOVA) were overlaid as vectors onto the NMDS using the envfit function in vegan.

different between locations (ANOVA, p< 0.05). To determine which pair-wise locations
were driving the significant differences between location overall, we performed Tukey’s
HSD tests (Tables S8 and S9).We also performed Tukey’s HSD tests on percent TOCwhich
was marginally non significantly different (ANOVA, p= 0.0519). All pair-wise location
comparisons of eelgrass density and dissolved oxygen were significantly different (Tukey’s
HSD, p< 0.05). The C:N ratio and sediment fraction 63 µmwere significantly different for
the outside-inside comparison (Tukey’s HSD, p< 0.05). Percent TIC and TOC as well as
sediment fraction 710 µmwere significantly different for the outside-edge comparison and
pH was significantly different for the inside-edge comparisons (Tukey’s HSD, p< 0.05).

To test if there was a correlation between environmental measures and microbial
community composition, Mantel tests were performed on Euclidean distances of
environmental measures and the Bray–Curtis dissimilarities of sediment communities.
A combined dataset including C:N ratio, TIC, TOC, dissolved oxygen, pH and eelgrass
density was found to be significantly positively correlated with the sediment microbial
community data (r = 0.1122, p= 0.0474) (Fig. 6). However, when measures were tested
individually only the C:N ratio (r = 0.1701, p= 0.016) and eelgrass density (r = 0.1292,
p= 0.0381) were significantly correlated with microbial community composition.

The significant correlation between the sediment communities and the C:N ratio may
indicate a change in ecosystem nutrient cycling at the patch edge. As Carbon (TIC and
TOC) was not correlated with the sediment microbial communities, the correlation with
the C:N ratiomay hint at the importance of nitrogen, which was not measured in this study,
to sediment community composition. Nitrogen is often a limiting terrestrial plant nutrient
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and N-limitation has also been observed in several seagrass studies, more frequently in
temperate habitats (De Boer, 2007). Terrestrial plants overcome N-limitation by having
beneficial interactions with nitrogen fixing bacteria and these bacteria have previously
been observed to form associations with eelgrasses (Capone & Budin, 1982; Welsh, 2000;
Bagwell et al., 2002;Adhitya, Thomas & Ward, 2007; Sun et al., 2015). Nitrogen fixation can
account for 5–10% of plant nitrogen requirements in temperate eelgrass patch sediments,
and up to 50% in tropical patch sediments, indicating an important role for nitrogen
fixation in overall patch health (Welsh, 2000).

A previous study looking at forest soil microbial communities found that microbial
biomass and activity were significantly lower at forest edges due to decreased litter
decomposition in the edge habitat and thus, changes in nutrient cycling (Malmivaara-Lämsä
et al., 2008). In seagrass patches, on average, vegetated sediments are significantly enriched
in organic matter compared to unvegetated sediments, with carbon stocks generally
higher on the inside of patches (Duarte, Holmer & Marbà, 2005; Ricart et al., 2015). It is
possible that the observed community structure changes in the sediment between locations
and the correlations with C:N ratio and eelgrass density here are indicative of a similar
trend of location based nutrient cycling resulting from differing nutrient deposition and
decomposition rates.

Eelgrass density may have direct or indirect effects on sediment microbial communities
as a result of the role eelgrass plays in its environment as a foundation species and an
ecosystem engineer (Koch, 2001) Seagrasses are known to modify their surrounding habitat
in a variety of ways including enhancing the input and retention of carbon and other
nutrients in the sediment (Gacia et al., 2002; Duarte et al., 2005; Duarte & Cebrián, 1996),
altering flow velocity and turbulence in the water column above patches (Fonseca et al.,
1982; Granata et al., 2001; Folkard, 2005) which can increase sedimentation (Short & Short,
1984; Dauby et al., 1995; Gacia et al., 2002) and oxygenating the sediment using their roots
(Caffrey & Kemp, 1991; Pedersen et al., 1998; Connell, Colmer & Walker, 1999).

Other factors at play in the observed differences between locations as a result of eelgrass
density may be the development stage of the eelgrass at the edge (if the patch is expanding
or contracting) and the variable use of eelgrass as a habitat by macroorganisms. From
terrestrial systems, it is known that microbial communities can vary across different stages
of plant development (Chaparro, Badri & Vivanco, 2014). Seagrasses at earlier stages in
development are known to have different carbon deposition rates than later stages, so if
seagrass patch was in the process of expanding this may change the abiotic conditions
at the patch edge, and thus might be reflected in distinct microbial communities at the
edge of a patch compared to the inside (Duarte & Sand-Jensen, 1990; Cebrián et al., 2000).
Additionally, seagrass patches are habitats for a large number of macroorganisms with
variable abundance across seagrass patch landscapes (seagrass densities) (Tanner, 2005;
Smith et al., 2008; Smith et al., 2011).

Ultimately, although we see differences between locations in environmental abiotic
measurements, we are unable, given the limitations of this study, to decouple these
measurements from the eelgrass itself (eelgrass density), which is highly correlated with
sediment community composition.
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CONCLUSIONS
This study provides new insights into the composition and assembly of the Z. marina
microbiome. Major findings include that distinct microbial communities are associated
with the leaves and roots of the plant, sediment associated communities are correlated with
host plant density,and specific microbial taxa are found to have high relative abundances on
particular tissues. Differences in the rhizosphere sediment community composition at the
patch edge were observed and correlated with variation in environmental measurements.
However, we were unable to disentangle these measures from eelgrass density, with the
strongest correlated factor with community differences being presence/absence of the host
plant. This is perhaps not unexpected from a field study, as eelgrass species are ecosystem
engineers that actively change the sediment chemistry and landscape (Orth et al., 2006; Bos
et al., 2007).

Overall, we believe that the results of this study hint at a network of complex interactions
between Z. marina, the microbes associated with Z. marina and biogeochemical cycling.
Untangling such networks is difficult but increasingly feasible. Although Z. marina is not a
model organism in the sense of Arabidopsis or poplar, we believe it can nevertheless become
a model for host-microbiome-environment interaction studies. Advantages of working on
this species include that there is a genome now available (Olsen et al., 2016), that there is a
large network of collaborating labs focusing on this species (Zostera Experimental Network;
http://zenscience.org), and that it can be used in common garden and reciprocal transplant
experiments. Along these lines we have been building a library of cultured isolates associated
with this species and sequencing the genomes of many of these (Lee et al., 2015a; Lee et al.,
2015b; Lee et al., 2016a; Lee et al., 2016b; Alexiev et al., 2016a; Alexiev et al., 2016b). There
are still areas in need of improvement (e.g., there a limited amount of full length 16S and
18S other reference data; only limited information on the in situ functions of microbes
are available, there is a need for more genetic tools for the host), but given the importance
of coastal marine systems and seagrasses generally, we believe continued efforts to study
the host-microbiome-environment interactions in this and related species are important.
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