131 research outputs found

    Efficient generation of long-distance conditional alleles using recombineering and a dual selection strategy in replicate plates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conditional knockout mice are a useful tool to study the function of gene products in a tissue-specific or inducible manner. Classical approaches to generate targeting vectors for conditional alleles are often limited by the availability of suitable restriction sites. Furthermore, plasmid-based targeting vectors can only cover a few kB of DNA which precludes the generation of targeting vectors where the two <it>lox</it>P sites are placed far apart. These limitations have been overcome in the recent past by using homologous recombination of bacterial artificial chromosomes (BACs) in <it>Escherichia coli </it>to produce large targeting vector containing two different <it>lox</it>P-flanked selection cassettes so that a single targeting event is sufficient to introduce <it>lox</it>P-sites a great distances into the mouse genome. However, the final targeted allele should be free of selection cassettes and screening for correct removal of selection cassettes can be a laborious task. Therefore, we developed a new strategy to rapidly identify ES cells containing the desired allele.</p> <p>Results</p> <p>Using BAC recombineering we generated a single targeting vector which contained two different selection cassettes that were flanked by <it>lox</it>P-<it>lox</it>P sites or by FRT-FRT/<it>lox</it>P sites so that they could be deleted sequentially by Cre- and FLPe-recombinases, respectively. Transfected ES cells were first selected in the presence of both antibiotics <it>in vitro </it>before correctly targeted clones were identified by Southern blot. After transfection of a Cre recombinase expression plasmid ES cell clones were selected on replicate plates to identify those clones which maintained the FRT-FRT/<it>lox</it>P flanked cassette and lost the <it>lox</it>P-<it>lox</it>P flanked cassette. Using this strategy facilitated the identification of ES cell clones containing the desired allele before blastocyst injection.</p> <p>Conclusion</p> <p>The strategy of ES cell cultures in replicate plates proved to be very efficient in identifying ES cells that had undergone the correct recombination event. This approach facilitates the generation of conditional knock-out mice when large parts of the genome are intended to be flanked by <it>lox</it>P sites.</p

    Expression of the Inhibitory CD200 Receptor Is Associated with Alternative Macrophage Activation

    Get PDF
    Classical macrophage activation is inhibited by the CD200 receptor (CD200R). Here, we show that CD200R expression was specifically induced on human in vitro polarized macrophages of the alternatively activated M2a subtype, generated by incubation with IL-4 or IL-13. In mice, peritoneal M2 macrophages, elicited during infection with the parasites Taenia crassiceps or Tryponosoma brucei brucei, expressed increased CD200R levels compared to those derived from uninfected mice. However, in vitro stimulation of mouse peritoneal macrophages and T crassiceps infection in IL-4-/- and IL-4R-/- mice showed that, in contrast to humans, induction of CD200R in mice was not IL-4 or IL-13 dependent. Our data identify CD200R as a suitable marker for alternatively activated macrophages in humans and corroborate observations of distinct species- and/or site-specific mechanisms regulating macrophage polarization in mouse and man. Copyright (C) 2009 S. Karger AG, Base

    Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system

    Get PDF
    Nippostrongylus brasiliensis infection and ovalbumin-induced allergic lung pathology are highly interleukin (IL)-4/IL-13 dependent, but the contributions of IL-4/IL-13 from adaptive (T helper [Th]2 cells) and innate (eosinophil, basophils, and mast cells) immune cells remain unknown. Although required for immunoglobulin (Ig)E induction, IL-4/IL-13 from Th2 cells was not required for worm expulsion, tissue inflammation, or airway hyperreactivity. In contrast, innate hematopoietic cell–derived IL-4/IL-13 was dispensable for Th2 cell differentiation in lymph nodes but required for effector cell recruitment and tissue responses. Eosinophils were not required for primary immune responses. Thus, components of type 2 immunity mediated by IL-4/IL-13 are partitioned between T cell–dependent IgE and an innate non-eosinophil tissue component, suggesting new strategies for interventions in allergic immunity

    Stat6-Dependent Inhibition of Mincle Expression in Mouse and Human Antigen-Presenting Cells by the Th2 Cytokine IL-4

    Get PDF
    The C-type lectin receptors (CLR) Mincle, Mcl and Dectin-2 bind mycobacterial and fungal cell wall glycolipids and carbohydrates. Recently, we described that expression of these CLR is down-regulated during differentiation of human monocytes to dendritic cells (DC) in the presence of GM-CSF and IL-4. Here, we demonstrate that the Th2 cytokine IL-4 specifically inhibits expression of Mincle, Mcl and Dectin-2in human APC. This inhibitory effect of IL-4 was observed across species, as murine macrophages and DC treated with IL-4 also down-regulated these receptors. IL-4 blocked up-regulation of Mincle and Mcl mRNA expression and cell surface protein by murine macrophages in response to the Mincle ligand Trehalose-6,6-dibehenate (TDB), whereas the TLR4 ligand LPS overcame inhibition by IL-4. Functionally, down-regulation of Mincle expression by IL-4 was accompanied by reduced cytokine production upon stimulation with TDB. These inhibitory effects of IL-4 were dependent on the transcription factor Stat6. Together, our results show that the key Th2 cytokine IL-4 exerts a negative effect on the expression of Mincle and other Dectin-2 cluster CLR in mouse and human macrophages and DC, which may render these sentinel cells less vigilant for sensing mycobacterial and fungal ligands

    Inflammation-induced IgE promotes epithelial hyperplasia and tumour growth

    Get PDF
    IgE is the least abundant circulating antibody class but is constitutively present in healthy tissues bound to resident cells via its high-affinity receptor, FcεRI. The physiological role of endogenous IgE antibodies is unclear but it has been suggested that they provide host protection against a variety of noxious environmental substances and parasitic infections at epithelial barrier surfaces. Here we show, in mice, that skin inflammation enhances levels of IgE antibodies that have natural specificities and a repertoire, VDJ rearrangements and CDRH3 characteristics similar to those of IgE antibodies in healthy tissue. IgE-bearing basophils are recruited to inflamed skin via CXCL12 and thymic stromal lymphopoietin (TSLP)/IL-3-dependent upregulation of CXCR4. In the inflamed skin, IgE/FcεRI-signalling in basophils promotes epithelial cell growth and differentiation, partly through histamine engagement of H1R and H4R. Furthermore, this IgE response strongly drives tumour outgrowth of epithelial cells harbouring oncogenic mutation. These findings indicate that natural IgE antibodies support skin barrier defences, but that during chronic tissue inflammation this role may be subverted to promote tumour growth

    Physiology and pathology of eosinophils: Recent developments: Summary of the Focus Workshop Organized by DGAKI.

    Get PDF
    Over the last century, eosinophils have been regarded ambiguously either as 'friends' or 'foes'. Recent developments have greatly enhanced our understanding of the role and function of eosinophils in health and disease. Pathogenic eosinophilic inflammation can lead to severe diseases in various organs, such as the gastrointestinal tract, airways, heart and skin. In a 2-day focus workshop of the German Society for Allergology and Clinical Immunology (DGAKI), the state of the art was discussed and practical recommendations for diagnosis and treatment of eosinophilic diseases, with a particular focus on new biologics, such as anti-interleukin 5 and anti-interleukin 5R, were derived

    Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity

    Get PDF
    Lack of immunological tolerance against self-antigens results in autoimmune disorders. During onset of autoimmunity, dendritic cells (DCs) are thought to be critical for priming of self-reactive T cells that have escaped tolerance induction. However, because DCs can also induce T cell tolerance, it remains unclear whether DCs are required under steady-state conditions to prevent autoimmunity. To address this question, we crossed CD11c-Cre mice with mice that express diphtheria toxin A (DTA) under the control of a loxP-flanked neomycin resistance (neoR) cassette from the ROSA26 locus. Cre-mediated removal of the neoR cassette leads to DTA expression and constitutive loss of conventional DCs, plasmacytoid DCs, and Langerhans cells. These DC-depleted (ΔDC) mice showed increased frequencies of CD4 single-positive thymocytes and infiltration of CD4 T cells into peripheral tissues. They developed spontaneous autoimmunity characterized by reduced body weight, splenomegaly, autoantibody formation, neutrophilia, high numbers of Th1 and Th17 cells, and inflammatory bowel disease. Pathology could be induced by reconstitution of wild-type (WT) mice with bone marrow (BM) from ΔDC mice, whereas mixed BM chimeras that received BM from ΔDC and WT mice remained healthy. This demonstrates that DCs play an essential role to protect against fatal autoimmunity under steady-state conditions

    Effective priming of herpes simplex virusspecific CD8+ T cells in vivo does not require infected dendritic cells

    Get PDF
    Resolution of virus infections depends on the priming of virus-specific CD8+ T cells by dendritic cells (DC). While this process requires major histocompatibility complex (MHC) class I-restricted antigen presentation by DC, the relative contribution to CD8+ T cell priming by infected DC is less clear. We have addressed this question in the context of a peripheral infection with herpes simplex virus 1 (HSV). Assessing the endogenous, polyclonal HSV-specific CD8+ T cell response, we found that effective in vivo T cell priming depended on the presence of DC subsets specialized in cross-presentation, while Langerhans cells and plasmacytoid DC were dispensable. Utilizing a novel mouse model that allows for the in vivo elimination of infected DC, we also demonstrated in vivo that this requirement for cross-presenting DC was not related to their infection but instead reflected their capacity to cross-present HSV-derived antigen. Taking the results together, this study shows that infected DC are not required for effective CD8+ T cell priming during a peripheral virus infection. IMPORTANCE The ability of some DC to present viral antigen to CD8+ T cells without being infected is thought to enable the host to induce killer T cells even when viruses evade or kill infected DC. However, direct experimental in vivo proof for this notion has remained elusive. The work described in this study characterizes the role that different DC play in the induction of virus-specific killer T cell responses and, critically, introduces a novel mouse model that allows for the selective elimination of infected DC in vivo. Our finding that HSV-specific CD8+ T cells can be fully primed in the absence of DC infection shows that cross-presentation by DC is indeed sufficient for effective CD8+ T cell priming during a peripheral virus infection.Our research is supported by the National Health and Medical Research Council of Australia. P. Whitney is supported by an Overseas Biomedical Fellowship (NHMRC) and a MDHS Faculty Fellowship (University of Melbourne). T. Gebhardt is supported by a fellowship from the Sylvia and Charles Viertel Charitable Foundation. D. Tscharke is supported by a Senior Research Fellowship (NHMRC)

    Concerted Activity of IgG1 Antibodies and IL-4/IL-25-Dependent Effector Cells Trap Helminth Larvae in the Tissues following Vaccination with Defined Secreted Antigens, Providing Sterile Immunity to Challenge Infection

    Get PDF
    Over 25% of the world's population are infected with helminth parasites, the majority of which colonise the gastrointestinal tract. However, no vaccine is yet available for human use, and mechanisms of protective immunity remain unclear. In the mouse model of Heligmosomoides polygyrus infection, vaccination with excretory-secretory (HES) antigens from adult parasites elicits sterilising immunity. Notably, three purified HES antigens (VAL-1, -2 and -3) are sufficient for effective vaccination. Protection is fully dependent upon specific IgG1 antibodies, but passive transfer confers only partial immunity to infection, indicating that cellular components are also required. Moreover, immune mice show greater cellular infiltration associated with trapping of larvae in the gut wall prior to their maturation. Intra-vital imaging of infected intestinal tissue revealed a four-fold increase in extravasation by LysM+GFP+ myeloid cells in vaccinated mice, and the massing of these cells around immature larvae. Mice deficient in FcRγ chain or C3 complement component remain fully immune, suggesting that in the presence of antibodies that directly neutralise parasite molecules, the myeloid compartment may attack larvae more quickly and effectively. Immunity to challenge infection was compromised in IL-4Rα- and IL-25-deficient mice, despite levels of specific antibody comparable to immune wild-type controls, while deficiencies in basophils, eosinophils or mast cells or CCR2-dependent inflammatory monocytes did not diminish immunity. Finally, we identify a suite of previously uncharacterised heat-labile vaccine antigens with homologs in human and veterinary parasites that together promote full immunity. Taken together, these data indicate that vaccine-induced immunity to intestinal helminths involves IgG1 antibodies directed against secreted proteins acting in concert with IL-25-dependent Type 2 myeloid effector populations
    corecore