20 research outputs found

    Oxidative status and reproductive effort of great tits in a handicapping experiment

    Get PDF
    Father's contribution in child care matters. Using an experimental approach, we showed that handicapped great tit fathers are more likely to reduce investment in their offspring compared with control fathers. In contrast, handicapped mothers did not reduce investment in their offspring. Furthermore, cellular stress levels differed between males and females, supporting the idea that males and females follow different lifetime strategies when it comes to the trade-off between self-maintenance and reproductio

    Combined therapy with ibrutinib and bortezomib followed by ibrutinib maintenance in relapsed or refractory mantle cell lymphoma and high-risk features: a phase 1/2 trial of the European MCL network (SAKK 36/13).

    Get PDF
    BACKGROUND The Bruton's tyrosine kinase inhibitor ibrutinib and the proteasome inhibitor bortezomib have single-agent activity, non-overlapping toxicities, and regulatory approval in mantle cell lymphoma (MCL). In vitro, their combination provides synergistic cytotoxicity. In this investigator-initiated phase 1/2 trial, we established the recommended phase 2 dose of ibrutinib in combination with bortezomib, and assessed its efficacy in patients with relapsed or refractory MCL. METHODS In this phase 1/2 study open in 15 sites in Switzerland, Germany and Italy, patients with relapsed or refractory MCL after ≤2 lines of chemotherapy and both ibrutinib-naïve and bortezomib-naïve received six cycles of ibrutinibb and bortezomib, followed by ibrutinib maintenance. For the phase 1 study, a standard 3 + 3 dose escalation design was used to determine the recommended phase 2 dose of ibrutinib in combination with bortezomib. The primary endpoint in phase 1 was the dose limiting toxicities in cycle 1. The phase 2 study was an open-label, single-arm trial with a Simon's two-stage min-max design, with a primary endpoint of overall response rate (ORR) assessed by CT/MRI. This study was registered with ClinicalTrials.gov, NCT02356458. FINDINGS Between August 2015 and September 2016, nine patients were treated in the phase 1 study, and 49 patients were treated between November 2016 and March 2020 in the phase 2 of the trial. The ORR was 81.8% (90% CI 71.1, 89.8%, CR(u) 21.8%) which increased with continued ibrutinib (median 10.6 months) to 87.3%, (CR(u) 41.8%). 75.6% of patients had at least one high-risk feature (Ki-67 > 30%, blastoid or pleomorphic variant, p53 overexpression, TP53 mutations and/or deletions). In these patients, ibrutinib and bortezomib were also effective with an ORR of 74%, increasing to 82% during maintenance. With a median follow-up of 25.4 months, the median duration of response was 22.7, and the median PFS was 18.6 months. PFS reached 30.8 and 32.9 months for patients with a CR or Cru, respectively. INTERPRETATION The combination of ibrutinib and bortezomib shows durable efficacy in patients with relapsed or refractory MCL, also in the presence of high-risk features. FUNDING SAKK (Hubacher Fund), Swiss State Secretariat for Education, Research and Innovation, Swiss Cancer Research Foundation, and Janssen

    Parasites suppress immune-enhancing effect of methionine in nestling great tits

    No full text
    After birth, an organism needs to invest both in somatic growth and in the development of efficient immune functions to counter the effects of pathogens, and hence an investment trade-off is predicted. To explore this trade-off, we simultaneously exposed nestling great tits (Parus major) to a common ectoparasite, while stimulating immune function. Using a 2×2 experimental design, we first infested half of the nests with hen fleas (Ceratophyllus gallinae) on day 3 post-hatch and later, on day 9-13 post-hatch, and then supplemented half of the nestlings within each nest with an immuno-enhancing amino acid (methionine). We then assessed the non-specific immune response by measuring both the inflammatory response to a lipopolysaccharide (LPS) and assessing the levels of acute phase proteins (APP). In parasite-infested nestlings, methionine had a negative effect on body mass close to fledging. Methionine had an immune-enhancing effect in the absence of ectoparasites only. The inflammatory response to LPS was significantly lower in nestlings infested with fleas and was also lower in nestlings supplemented with methionine. These patterns of immune responses suggest an immunosuppressive effect of ectoparasites that could neutralise the immune-enhancing effect of methionine. Our study thus suggests that the trade-off between investment in life history traits and immune function is only partly dependent on available resources, but shows that parasites may influence this trade-off in a more complex way, by also inhibiting important physiological functions

    Data from: Heterozygosity is linked to the costs of immunity in nestling great tits (Parus major)

    No full text
    There is growing evidence that heterozygosity–fitness correlations (HFCs) are more pronounced under harsh conditions. Empirical evidence suggests a mediating effect of parasite infestation on the occurrence of HFCs. Parasites have the potential to mediate HFCs not only by generally causing high stress levels but also by inducing resource allocation tradeoffs between the necessary investments in immunity and other costly functions. To investigate the relative importance of these two mechanisms, we manipulated growth conditions of great tit nestlings by brood size manipulation, which modifies nestling competition, and simultaneously infested broods with ectoparasites. We investigated under which treatment conditions HFCs arise and, second, whether heterozygosity is linked to tradeoff decisions between immunity and growth. We classified microsatellites as neutral or presumed functional and analyzed these effects separately. Neutral heterozygosity was positively related to the immune response to a novel antigen in parasite-free nests, but not in infested nests. For nestlings with lower heterozygosity levels, the investments in immunity under parasite pressure came at the expenses of reduced feather growth, survival, and female body condition. Functional heterozygosity was negatively related to nestling immune response regardless of the growth conditions. These contrasting effects of functional and neutral markers might indicate different underlying mechanisms causing the HFCs. Our results confirm the importance of considering marker functionality in HFC studies and indicate that parasites mediate HFCs by influencing the costs of immune defense rather than by a general increase in environmental harshness levels

    Single locus heterozygosity

    No full text
    Single locus heterozygosity for all individual nestlings. 0=homozygous, 1=heterozygous

    Body measures and heterozygosity levels

    No full text
    This data set includes nestling body measures and heterozygosity levels of nestlings and rearing parents. Nest_ID: Nest of rearing, Chick_ID: Individual nestling's code, Brood_manipul: Brood size manipulation treatment, Infestation: Flea infestation, Original_brood: Brood size before manipulation treatment, HetHLm(f)_f: Functional heterozygosity of foster male (female), HetHLm(f)_n: Neutral heterozygosity of foster male (female), HetHL_f: Nestling functional heterozygosity, HetHL_n: Nestling neutral heterozygosity, Sex: Nestling sex, Weight_d15: Nestling weight 15 days after hatching, Fledged: 1=nestling successfully fledged, 0= nestling died, LPS_response: Difference in thickness measure before and after LPS-Injection, Rank: Nestling hatching rank, Body_cond: Nestling body conditio

    Body measures and heterozygosity levels

    No full text
    This data set includes nestling body measures and heterozygosity levels of nestlings and rearing parents. Nest_ID: Nest of rearing, Chick_ID: Individual nestling's code, Brood_manipul: Brood size manipulation treatment, Infestation: Flea infestation, Original_brood: Brood size before manipulation treatment, HetHLm(f)_f: Functional heterozygosity of foster male (female), HetHLm(f)_n: Neutral heterozygosity of foster male (female), HetHL_f: Nestling functional heterozygosity, HetHL_n: Nestling neutral heterozygosity, Sex: Nestling sex, Weight_d15: Nestling weight 15 days after hatching, Fledged: 1=nestling successfully fledged, 0= nestling died, LPS_response: Difference in thickness measure before and after LPS-Injection, Rank: Nestling hatching rank, Body_cond: Nestling body conditio

    Direct Targeting <i>KRAS</i> Mutation in Non-Small Cell Lung Cancer: Focus on Resistance

    No full text
    KRAS is the most frequently mutated oncogene in non-small cell lung cancers (NSCLC), with a frequency of around 30%, and encoding a GTPAse that cycles between active form (GTP-bound) to inactive form (GDP-bound). The KRAS mutations favor the active form with inhibition of GTPAse activity. KRAS mutations are often with poor response of EGFR targeted therapies. KRAS mutations are good predictive factor for immunotherapy. The lack of success with direct targeting of KRAS proteins, downstream inhibition of KRAS effector pathways, and other strategies contributed to a focus on developing mutation-specific KRAS inhibitors. KRAS p.G12C mutation is one of the most frequent KRAS mutation in NSCLC, especially in current and former smokers (over 40%), which occurs among approximately 12–14% of NSCLC tumors. The mutated cysteine resides next to a pocket (P2) of the switch II region, and P2 is present only in the inactive GDP-bound KRAS. Small molecules such as sotorasib are now the first targeted drugs for KRAS G12C mutation, preventing conversion of the mutant protein to GTP-bound active state. Little is known about primary or acquired resistance. Acquired resistance does occur and may be due to genetic alterations in the nucleotide exchange function or adaptative mechanisms in either downstream pathways or in newly expressed KRAS G12C mutation

    Molecular Mechanism of EGFR-TKI Resistance in EGFR-Mutated Non-Small Cell Lung Cancer: Application to Biological Diagnostic and Monitoring

    No full text
    International audienceNon-small cell lung cancer (NSCLC) is the most common cancer in the world. Activating epidermal growth factor receptor (EGFR) gene mutations are a positive predictive factor for EGFR tyrosine kinase inhibitors (TKIs). For common EGFR mutations (Del19, L858R), the standard first-line treatment is actually third-generation TKI, osimertinib. In the case of first-line treatment by first (erlotinib, gefitinib)- or second-generation (afatinib) TKIs, osimertinib is approved in second-line treatment for patients with T790M EGFR mutation. Despite the excellent disease control results with EGFR TKIs, acquired resistance inevitably occurs and remains a biological challenge. This leads to the discovery of novel biomarkers and possible drug targets, which vary among the generation/line of EGFR TKIs. Besides EGFR second/third mutations, alternative mechanisms could be involved, such as gene amplification or gene fusion, which could be detected by different molecular techniques on different types of biological samples. Histological transformation is another mechanism of resistance with some biological predictive factors that needs tumor biopsy. The place of liquid biopsy also depends on the generation/line of EGFR TKIs and should be a good candidate for molecular monitoring. This article is based on the literature and proposes actual and future directions in clinical and translational research

    Systemic inflammation in a melanoma patient treated with immune checkpoint inhibitors—an autopsy study

    Get PDF
    BACKGROUND: Immune checkpoint inhibitors targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) have been recently approved for treatment of patients with metastatic melanoma and non-small cell lung cancer (NSCLC). Despite important clinical benefits, these therapies are associated with a diverse spectrum of immune-related adverse events (irAEs) that are typically transient, but occasionally severe or even fatal. CASE PRESENTATION: This autopsy case illustrates that clinically overt irAEs may represent only a fraction of the total spectrum of immune-related organ pathology in patients treated with immune checkpoint inhibitors. We report a comprehensive analysis of systemic irAE pathology based on the autopsy of a 35-year-old female patient with metastatic melanoma treated first with ipilimumab and then nivolumab. The clinical course was characterized by a mixed tumor response with regression of skin and lung metastases and fatal progression of metastatic disease in the small bowel, peritoneum and brain. During therapy with ipilimumab, radiographic features of immune-related pneumonitis were noted. The autopsy examination established a sarcoid-like granulomatous reaction of the lung, pulmonary fibrosis and diffuse alveolar damage. Importantly, a clinically unapparent but histologically striking systemic inflammation involving the heart, central nervous system, liver and bone marrow was identified. Severe immune-related end-organ damage due to lymphocytic myocarditis was found. CONCLUSIONS: Autopsy studies are an important measure of quality control and may identify clinically unapparent irAEs in patients treated with immunotherapy. Pathologists and clinicians need to be aware of the broad spectrum of irAEs for timely management of treatment-related morbidity
    corecore