34 research outputs found

    Magnetic properties of commensurate Bose-Bose mixtures in one-dimensional optical lattices

    Full text link
    We investigate magnetic properties of strongly interacting bosonic mixtures confined in one dimensional geometries, focusing on recently realized Rb-K gases with tunable interspecies interactions. By combining analytical perturbation theory results with density-matrix-renormalization group calculations, we provide quantitative estimates of the ground state phase diagram as a function of the relevant microscopic quantities, identifying the more favorable experimental regimes in order to access the various magnetic phases. Finally, we qualitatively discuss the observability of such phases in realistic setups when finite temperature effects have to be considered.Comment: 9 pages, 7 figures, to be published in EPJ ST special issue on "Novel Quantum Phases and Mesoscopic Physics in Quantum Gases

    Loops and Strings in a Superconducting Lattice Gauge Simulator

    Get PDF
    We propose an architecture for an analog quantum simulator of electromagnetism in 2+1 dimensions, based on an array of superconducting fluxonium devices. The encoding is in the integer (spin-1 representation of the quantum link model formulation of compact U(1) lattice gauge theory. We show how to engineer Gauss' law via an ancilla mediated gadget construction, and how to tune between the strongly coupled and intermediately coupled regimes. The witnesses to the existence of the predicted confining phase of the model are provided by nonlocal order parameters from Wilson loops and disorder parameters from 't Hooft strings. We show how to construct such operators in this model and how to measure them nondestructively via dispersive coupling of the fluxonium islands to a microwave cavity mode. Numerical evidence is found for the existence of the confined phase in the ground state of the simulation Hamiltonian on a ladder geometry.Comment: 17 pages, 5 figures. Published versio

    Fundamental thresholds of realistic quantum error correction circuits from classical spin models

    Get PDF
    Mapping the decoding of quantum error correcting (QEC) codes to classical disordered statistical mechanics models allows one to determine critical error thresholds of QEC codes under phenomenological noise models. Here, we extend this mapping to admit realistic, multi-parameter noise models of faulty QEC circuits, derive the associated strongly correlated classical spin models, and illustrate this approach for a quantum repetition code with faulty stabilizer readout circuits. We use Monte-Carlo simulations to study the resulting phase diagram and benchmark our results against a minimum-weight perfect matching decoder. The presented method provides an avenue to assess fundamental thresholds of QEC circuits, independent of specific decoding strategies, and can thereby help guiding the development of near-term QEC hardware

    Symmetry-protected topological phases in lattice gauge theories: Topological QED2

    Get PDF
    The interplay of symmetry, topology, and many-body effects in the classification of phases of matter poses a formidable challenge in condensed-matter physics. Such many-body effects are typically induced by inter- particle interactions involving an action at a distance, such as the Coulomb interaction between electrons in a symmetry-protected topological (SPT) phase. In this work we show that similar phenomena also occur in certain relativistic theories with interactions mediated by gauge bosons, and constrained by gauge symmetry. In particular, we introduce a variant of the Schwinger model or quantum electrodynamics (QED) in 1+1 dimensions on an interval, which displays dynamical edge states localized on the boundary. We show that the system hosts SPT phases with a dynamical contribution to the vacuum θ-angle from edge states, leading to a new type of topological QED in 1+1 dimensions. The resulting system displays an SPT phase which can be viewed as a correlated version of the Su-Schrieffer-Heeger topological insulator for polyacetylene due to non-zero gauge couplings. We use bosonization and density-matrix renormalization group techniques to reveal the detailed phase diagram, which can further be explored in experiments of ultra-cold atoms in optical lattices

    Twins Percolation for Qubit Losses in Topological Color Codes

    Get PDF
    We establish and explore a new connection between quantum information theory and classical statistical mechanics by studying the problem of qubit losses in 2D topological color codes. We introduce a protocol to cope with qubit losses, which is based on the identification and removal of a twin qubit from the code, and which guarantees the recovery of a valid three-colorable and trivalent reconstructed color code lattice. Moreover, we show that determining the corresponding qubit loss error threshold is equivalent to a new generalized classical percolation process. We numerically compute the associated qubit loss thresholds for two families of 2D color code and find that these are close to satisfying the fundamental limit pfund=0.461±0.005p_\text{fund} = 0.461 \pm 0.005 close to the 50% as imposed by the no-cloning theorem. Our findings reveal a new connection between topological color codes and percolation theory, show high robustness of color codes against qubit loss, and are relevant for implementations of quantum error correction in various physical platforms.Comment: 6+7 pages, 3+7 figure

    Experimental deterministic correction of qubit loss

    Get PDF
    The successful operation of quantum computers relies on protecting qubits from decoherence and noise which, if uncorrected, will lead to erroneous results. These errors accumulate during an algorithm and thus correcting them becomes a key requirement for large-scale and fault-tolerant quantum information processors. Besides computational errors, which can be addressed by quantum error correction, the carrier of the information can also be completely lost or the information can leak out of the computational space. It is expected that such loss errors will occur at rates that are comparable to computational errors. Here we experimentally implement a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code in a trapped-ion quantum processor. The key technique for this correction is a quantum non-demolition measurement via an ancillary qubit, which acts as a minimally invasive probe to detect absent qubits while only imparting the minimal quantum-mechanically possible disturbance on the remaining qubits. Upon detecting qubit loss, a recovery procedure is triggered in real-time, which maps the logical information onto a new encoding on the remaining qubits. Although the current demonstration is performed in a trapped-ion quantum processor, the protocol is applicable to other quantum computing architectures and error correcting codes, including leading 2D and 3D topological codes. These methods provide a complete toolbox for the correction of qubit loss that complements techniques to mitigate computational errors, which together constitute the building blocks for complete and scalable quantum error correction

    Effective Theory and Breakdown of Conformal Symmetry in a Long-Range Quantum Chain

    Get PDF
    We deal with the problem of studying the symmetries and the effective theories of long-range models around their critical points. A prominent issue is to determine whether they possess (or not) conformal symmetry (CS) at criticality and how the presence of CS depends on the range of the interactions. To have a model, both simple to treat and interesting, where to investigate these questions, we focus on the Kitaev chain with long-range pairings decaying with distance as power-law with exponent alpha. This is a quadratic solvable model, yet displaying non-trivial quantum phase transitions. Two critical lines are found, occurring respectively at a positive and a negative chemical potential. Focusing first on the critical line at positive chemical potential, by means of a renormalization group approach we derive its effective theory close to criticality. Our main result is that the effective action is the sum of two terms: a Dirac action S-D, found in the short-range Ising universality class, and an "anomalous" CS breaking term SAN. While SD originates from low-energy excitations in the spectrum, SAN originates from the higher energy modes where singularities develop, due to the long-range nature of the model. At criticality SAN flows to zero for alpha > 2, while for alpha infinity the ELI is restored. In order to test the validity of the determined effective theory, we compared the two-fermion static correlation functions and the von Neumann entropy obtained from them with the ones calculated on the lattice, finding agreement. These results explain two observed features characteristic of long-range models, the hybrid decay of static correlation functions within gapped phases and the area-law violation for the von Neumann entropy. The proposed scenario is expected to hold in other long-range models displaying quasiparticle excitations in ballistic regime. From the effective theory one can also see that new phases emerge for alpha infinity) model, are not altered. This also shows that the long-range paired Kitaev chain provides an example of a long-range model in which the value of a where the CS is broken does not coincide with the value at which the critical exponents start to differ from the ones of the corresponding short-range model. At variance, for the second critical line, having negative chemical potential, only SAN (So) is present for 1 2). Close to this line, where the minimum of the spectrum coincides with the momentum where singularities develop, the critical exponents change where CS is broken. \ua9 2016 Elsevier Inc

    Adaptive Bayesian phase estimation for quantum error correcting codes

    Get PDF
    Realisation of experiments even on small and medium-scale quantum computers requires an optimisation of several parameters to achieve high-fidelity operations. As the size of the quantum register increases, the characterisation of quantum states becomes more difficult since the number of parameters to be measured grows as well and finding efficient observables in order to estimate the parameters of the model becomes a crucial task. Here we propose a method relying on application of Bayesian inference that can be used to determine systematic, unknown phase shifts of multi-qubit states. This method offers important advantages as compared to Ramsey-type protocols. First, application of Bayesian inference allows the selection of an adaptive basis for the measurements which yields the optimal amount of information about the phase shifts of the state. Secondly, this method can process the outcomes of different observables at the same time. This leads to a substantial decrease in the resources needed for the estimation of phases, speeding up the state characterisation and optimisation in experimental implementations. The proposed Bayesian inference method can be applied in various physical platforms that are currently used as quantum processors
    corecore