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We propose an architecture for an analog quantum simulator of electromagnetism in 2þ 1 dimensions,
based on an array of superconducting fluxoniumdevices. The encoding is in the integer (spin-1) representation
of thequantum linkmodel formulation of compactUð1Þ lattice gauge theory.We showhow to engineerGauss’
law via an ancilla mediated gadget construction, and how to tune between the strongly coupled and
intermediately coupled regimes. The witnesses to the existence of the predicted confining phase of the model
are provided by nonlocal order parameters fromWilson loops and disorder parameters from ’t Hooft strings.
We show how to construct such operators in this model and how to measure them nondestructively via
dispersive coupling of the fluxonium islands to amicrowave cavitymode.Numerical evidence is found for the
existence of the confined phase in the ground state of the simulation Hamiltonian on a ladder geometry.
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Gauge theories play a fundamental role in modern
physics, including quantum electrodynamics and quantum
chromodynamics. The discretized version of gauge theory,
lattice gauge theory (LGT), is key to understanding physics
ranging from quantum spin liquids to quark-gluon plasmas
[1–3]. A fundamental phenomenon in gauge theories is the
notion of confinement, which manifests in the absence of
isolated, color-charged particles in nature; i.e., the only
“physical” states are those that transform “trivially” under a
gauge transformation. Yet, quantum phases of gauge field
theories cannot be characterized by local order parameters.
Instead, nonlocal order parameters such as Wilson loops [1]
and ’t Hooft strings [4] have been introduced to indicate the
presence or absence of a confined phase.
Quantum link models (QLMs) provide a formulation of

LGTs, in which finite-dimensional subsystems associated
with edges of the lattice encode the gauge field [5–7].
Related Uð1Þ gauge models are important for understand-
ing various condensed matter systems, including quantum
spin ice models or quantum dimer models, which may
exhibit deconfined critical points at T ¼ 0 [8]. In principle,
QLMs break Lorentz invariance while relativistic Uð1Þ
gauge theories in 2þ 1 dimensions are always in a
confinement phase at T ¼ 0 but may undergo a phase
transition at Tc > 0 to a deconfined phase [9]. In either
case, confinement physics is a key to understanding the
phenomenology.
Numerical simulation of LGTs can be computationally

costly due to the size of the Hilbert space or the sign problem
with quantum Monte Carlo techniques [10] (for recent
proposals using tensor networks see Refs. [11–23]). An
alternative approach is to build analog quantum simulators

to replicate the equilibrium and dynamical properties of a
system of interest. Indeed, this is one of the motivations for
quantum technologies based on atomic [24–40] and super-
conducting platforms [41–44]. Away to measure space-time
Wilson loops in atomic lattice gauge simulators (assuming
localized excitations) was given in Ref. [32] but a critical
outstanding problem has been the reliable measurement of
nonlocal, space-like Wilson loops and ’t Hooft strings.
Here, we propose an analog simulator of a pure compact

Uð1Þ QLM in 2þ 1 dimensions [45], based on super-
conducting fluxonium [46] devices placed on a square
lattice. The devices operate in a finite-dimensional mani-
fold of low-lying eigenstates, to represent “discrete”
electric fluxes on the lattice. By engineering local couplings
between devices, we show how to replicate the local
interactions and constraints of the QLM. The couplings
can be tuned to access different phases of the quantum
phase diagram of the model. We demonstrate how to
measure nonlocal, space-like Wilson loops and ’t Hooft
strings in the proposed architecture. Moreover, we report
density-matrix renormalization group (DMRG) calcula-
tions of a ’t Hooft disorder parameter in a QLM, and
show that the QLM indeed captures confinement physics.
Quantum link model.—In the pure gauge Uð1Þ QLM,

electric fluxes Êα;β are defined on the links hα; βi of a square
latticewith local link state spaceCNþ1 [circles inFig. 1(a)]. In
the electric basis, the Hilbert space is labeled by the electric
fluxes on the links, Êα;βjEα;βi ¼ Eα;βjEα;βi. For a compact
Uð1Þ gauge group, fluxes take integer or half integer values,
−ðN=2Þ ≤ Eα;β ≤ ðN=2Þ, N ∈ Zþ. The local link electric-

displacement operator Ûα;β satisfies the commutation
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relation ½Êα;β; Ûα;β� ¼ −Ûα;β [for a detailed description see
the Supplemental Material [47] (Sec. I)]. In the charge-free
sector, the net electric flux at a given vertex is zero; hence,
there is a conserved quantity Ĝα ¼ Êμ;α þ Êν;α − Êα;β−
Êα;γ . The phase of the operators can be changed locally

with theUð1Þ gauge transformation eiθαĜα and the dynamics
remain invariant. The gauge invariant subspace satisfies
Ĝαjphysi ¼ 0, which is the discretized Gauss law
~∇ · ~Ejphys ¼ 0. In a pure gauge model, there are two com-
peting terms in the Hamiltonian: the electric term penalizes
electric flux on each link hα; βi and the magnetic term
penalizes magnetic flux on each plaquette □,

ĤQLM¼ g2elec
X
hα;βi

Êα;β
2−

1

g2mag

X
□

ðÛα;βÛβ;δÛδ;γÛγ;αþH:c:Þ;

ð1Þ

where g2elec and g
2
mag are the coupling constants for the electric

term and magnetic term, respectively.
We characterize the confinement of electric charges,

which locally violate Gauss’ law, using Wilson loops. The

smallest Wilson loop operator is defined on a plaquette,
W ¼ Ûα;βÛβ;δÛδ;γÛγ;α. This is a discrete approximation to

ei⨖A·dl where A is the magnetic vector potential. Over a
longer closed path C, a Wilson loop operator WC is the
path-ordered multiplication of Ûα;β along links in C. In the
confined phase, WC satisfies an area law hWCi ∼ e−areaðCÞ.
In the deconfined phase, it satisfies hWCi ∼ e−perimeterðCÞ.
A ’t Hooft string operator is defined as a directed product

of electric link operators ϒ̂ðφÞ ¼ Q
n exp ðiφÊnax;naxþayÞ;

in Ref. [47] (Sec. IB) we show that in the QLM it acts a
disorder parameter. This operator changes the value of the
magnetic flux by an amount φ on the plaquettes where it
starts and ends, introducing a pair of magnetic vortices. In
the confining phase it is ordered, i.e., hϒ̂ðφÞi ≠ 0 for φ ≠ 0
in 2þ 1 dimensions. The fact that a nonzero expectation
value of the disorder parameter characterizes a confinement
phase in a gauge model may simplify the signal-to-noise
problem in an actual quantum simulation.
In Fig. 2(a) we show the disorder parameter ϒ̂ for ĤQLM

on the quasi-2D ladder lattice, shown in Fig. 1(c), calcu-
lated using DMRG calculation. The ladder is the minimal
lattice exemplifying a 2þ 1 dimensional system. Clearly,
ϒ̂ is nonzero in the strong coupling regime g2elecg

2
mag ≫ 1,

indicative of a confining phase. Thus, even in this limited
geometry, the QLM captures confinement physics. In what
follows, we propose an analog QLM simulator to study
ground state and dynamical phenomena on computation-
ally challenging 2D lattices.

FIG. 1. Uð1Þ quantum link model engineered in a fluxonium
array. (a) “Electric” Êα;β, and “magnetic” Ûα;β, degrees of freedom
are associated with links hα; βi of a square lattice. The link degrees
of freedom (red circles) are encoded in eigenstates of the fluxonia.
The ancillae (blue diamonds) on vertices are inductively coupled
to neighboring link islands to mediate the Gauss constraint and
plaquette interactions are obtained via link nearest neighbor
capacitive coupling. (b) Superconducting circuit elements used
to build and couple components of the simulation. The link devices
have local phase ϕ̂link and capacitive, inductive, and flux-biased
Josephson energiesEC,EL, and EJ , respectively, and similarly for
the ancilla devices. The capacitive and inductive coupling energies
are Ec

C and Ec
L. (c) A minimal quasi-1D “ladder” implementation

embedded in a microwave cavity (black box), in which a ’t Hooft
string of link fluxonia (green circles) can be measured via an
ancilla coupled to the cavity (green triangle).

FIG. 2. Expectation value of the ’t Hooft string ϒ̂ðφÞ
which inserts a flux φ at the plaquette in the middle of a ladder
[see Fig. 1(c)]. Left panel: value in the ground state of the pure
gauge model ĤQLM as a function of the electric coupling
g2elec with a perturbative value of the magnetic coupling
ð1=g2magÞ ∼ ð2J2=UÞ → ð2=75Þ. Right panel: value in the ground
state of the two-body Hamiltonian Ĥimp as a function of the on-
site energy V, with J ¼ 1 and U ¼ 75. Numerics were performed
for a size L ¼ 29 rung ladder with 85 spins using DMRG calcu-
lation with 300 states and a truncation error estimated at < 10−12.
From the plots, hϒ̂i ≥ 0.5 is indicative of a confining phase. The
equivalence between the implemented model (3) and the gauge
invariant model (4) in the strongly coupled and intermediately
coupled regimes is evident.
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Implementation with superconducting devices.—To sim-
ulate a Uð1Þ QLM, there are three elements: (i) the local
Hilbert space, labeled by the electric flux on the lattice
links; here, the Hilbert space is spanned by a discrete set of
states of a fluxonium device, (ii) Gauss’ law on the lattice
vertices; here, this is imposed by strong interactions
between devices, mediated by tunable inductive couplings,
(iii) the gauge invariant dynamics; here, this emerges at
second order of perturbation with capacitive couplings
between neighboring devices.
We propose a lattice of fluxonium devices [51], which are

inductively shunted superconducting Josephson junctions
with demonstrated relaxation times on the order of 1 ms
[52,53], located on the edges and vertices of the square
lattice, as shown in Figs. 1(a) and 1(b). The Hamiltonian for
device k is

Ĥk ¼ 4ECn̂2k þ P̂ðϕ̂kÞ; ð2Þ
where P̂ðϕ̂kÞ ¼ −EJ cosðϕ̂k þ ϕoffÞ þ ELϕ̂

2
k=2 is the local

potential,EC ¼ e2=ð2CÞ is the charging energy of the island
with total capacitance C, EJ ¼ ðℏ=2eÞ2ð1=LJÞ is the
Josephson energy with LJ the effective inductance of the
Josephson junction,EL ¼ ðℏ=2eÞ2ð1=LÞ is the shunt induc-
tive energy, and EJ ≥ EC > EL.
The phase ϕ̂k is proportional to the (physical) flux in the

device. It is not compact, so the conjugate charge n̂k ¼
−ið∂=∂ϕkÞ takes continuous values. The offset phase
ϕoff ¼ 2πΦext=Φ0, where Φext is a tunable flux [53] and
Φ0 ¼ h=ð2eÞ is the flux quantum. The potential terms can
be tuned to support integer representations of the electric
flux by setting ϕoff ¼ 0, shown in Fig. 3(a), or half-integer
representations with ϕoff ¼ π, Fig. 3(b). In the limit
EJ ∼ EC ≫ EL, the lowest energy states are the first band
Wannier functions with mean (physical) flux hϕ̂ki ¼ 2πmk,
and zero-point phase fluctuations σϕ ¼ ð8EC=EJÞ1=4.

The Gauss law constraint is enforced by ancillary fluxo-
nium devices at lattice vertices, with parameters Ea

J; E
a
C; E

a
L

andϕa
off ¼ π. The lowest energy states jgi and jei are shown

in Fig. 3(b). Each ancilla is inductively coupled to its
neighbors, Ĥind ¼ ðEc

L=2Þ
P

v

P
4
k¼1ðϕ̂k − ϕ̂aÞ2, where

Ec
L ¼ ðℏ=2eÞ2ð1=LcÞ, and Lc is the coupling inductance.

Ancillae are initialized in the long-lived excited state jei, for
which T1 > 1 ms [53].
At first order in Ec

L=Δ, the interaction Ĥind is zero since
jei is antisymmetric. At second order we obtain an effec-
tive Hamiltonian acting on the links around each vertex.
We only include the terms diagonal in the jmki basis since
the off diagonal terms are much smaller by a factor ∼e−π2=σ2.
The total Hamiltonian, local plus inductive interaction for a
spin-S representation is then

P
kĤk þ Ĥind ¼ V

P
kS

z
k
2þ

U
P

vð
P

k∈N ðvÞŜ
z
kÞ2, where Ŝz ¼ P

S
m¼−S mjmihmj, U ¼

Ec
L
2jhgjϕ̂ajeij2jhϕ̂im¼1j2=Δ > 0,N ðvÞ is the neighborhood

of a vertex v (see Ref. [47], Sec. IIB), Δ ¼ Ee − Eg > 0 is
the ancilla qubit energy splitting including local contri-
butions from the inductive coupling, calculated using
Eq. (2) with the replacement Ea

L → Ea
L þ 4Ec

L, and V
(which generates the QLM electric coupling g2elec) is the
qutrit energy splitting E1 − E0, computed using Eq. (2)
with EL → EL þ 2Ec

L.
The QLMmagnetic coupling g2mag is generated by a capa-

citive coupling between link devices, Ĥcap¼8Ec
C

P
hk;jin̂kn̂j,

where Ec
C=EC≃f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þξ−2

p
K0ðξ−1Þ=4ξK½−16ξ2=ð8þξ−2Þ�g,

ξ≡ ffiffiffiffiffiffiffiffiffiffiffi
Cc=C

p
and Cc is the capacitance between nearest

neighbors, K0ðxÞ is a modified Bessel function, and KðxÞ is
an elliptic integral (see Ref. [47], Sec. IIC). The operators n̂
generate displacements in phase, so the interaction drives
fluctuations in the electric flux mk. Longer range couplings
decay exponentially in island separation, with a correlation
length ξ. The total two body Hamiltonian is

Ĥimp ¼ V
X
k

Szk
2 þU

X
v

� X
k∈N ðvÞ

Ŝzk

�
2

þ J
X
hj;ki

ðŜþj Ŝ−k þ Ŝ−j Ŝ
þ
k Þ ð3Þ

with J ¼ −8Ec
Cjh1jn̂j0ij2. In the limit U ≫ jJj, the second

term projects the ground states into the gauge invariant
subspace and the effective Hamiltonian is

Ĥeff ¼ ðV þ 2J2=UÞ
X

j
Ŝzj

2

− ð2J2=UÞ
X
□

ðŜþŜ−ŜþŜ− þ H:c:Þ

þ ðJ2=4UÞ
X
hj;ki

ŜzjŜ
z
kð1 − ŜzjŜ

z
kÞ: ð4Þ

This is the first key element of our proposal: defining
g2elec ¼ V þ 2J2=U and 1=g2mag ¼ 2J2=U, the first two

(a)

(b)

FIG. 3. (a) Link fluxonium devices operate as qutrits with
ϕoff ¼ 0. The potential PðϕlinkÞ (red) and the eigenfunctions are
plotted for qutrit states j0i; j � 1i, which represent electric flux,
and the next energy state jsi. A cavity field couples states j0i ↔
jsi with Rabi frequency Ω and detuning δ to tune the electric
coupling in the QLM. (b) Ancilla fluxonium potential PðϕaÞ
(blue) with ϕoff ¼ π, and eigenfunctions jgi and jei. Ancillae are
initialized in state jei and generate the Gauss constraint on link
devices through an effective interaction.
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terms of Ĥeff are equivalent to the gauge Hamiltonian
ĤQLM, Eq. (1), once we identify Ê ↦ Ŝz and Û ↦ Ŝ−;
notice the latter is nonunitary unlike the continuum case.
The third term respects all the symmetries of the gauge
invariant model, and renormalizes the electric field and U.
Comparison of DMRG calculations of ĤQLM [Fig. 2(a)]
and Ĥeff [Fig. 2(b)] on a ladder geometry shows that Ĥeff

replicates the confinement physics (ϒ̂ ≠ 0) of the original
QLM. We note that higher order corrections to the gauge
invariant Hamiltonian in Eq. (4) may lead to an effective
coupling to matter field. In this case, the behavior of the
Wilson loops and ’t Hooft strings in ð2þ 1ÞD is uncertain,
and left open to further study [54].
We now discuss different limits of the model based on

the three level (spin-1) Uð1Þ QLM shown in Fig. 3(a). The
interaction energies are determined by diagonalizing the
local fluxonium Hamiltonian and computing wave-
function overlaps (see Ref. [47], Sec. IID). We show
how to prepare the strongly coupled limit, which is close
to the product state⊗links j0ij, and then reduce the coupling
to the intermediate limit.
Strong coupling,—Because Ĥind contributes both to U

and V in Ĥimp with comparable magnitudes and jJj ≪ U,
in order to satisfy the Gauss constraint, the system will
be in the strong coupling regime. To enforce this, the
Josephson energy on the ancilla islands Ea

J is the biggest
energy scale of the model, which determines the cascade of
energies: EJ ¼ Ea

C ¼ 0.2Ea
J , EC ¼ 0.06Ea

J , E
c
C ¼ 0.04Ea

J ,
Ea
L ¼ 0.01Ea

J , EL ¼ 0.003Ea
J , and Ec

L ¼ 0.0002Ea
J . The

link states j � 1i are then nearly degenerate with splitting
0.0006Ea

J and E
c
L=Δ ¼ 0.023 ensuring that the perturbation

theory on the ancilla is valid. We find U=Ea
J ¼ 0.006,

V=Ea
J ¼ 0.06, and J=U ¼ −0.04, which by Eq. (1) gives

g2elecg
2
magn ∼ 3000. Josephson energies EJ ¼ 210 GHz [55],

capacitive energies EC ¼ 14.2 GHz [56], and inductive
energies EL ¼ 0.52 GHz [57] have been reported, sug-
gesting the simulation coupling strengths here are within
reach of experimentally demonstrated values.
Intermediate coupling.—To reduce the electric field term

we shift the energy of state j0i by off-resonant coupling to
an excited state jsi, above the qutrit subspace. Consider
a driving field that couples to the fluxonium at frequency
ωF, which is detuned from the j0i → jsi transition by
δ ¼ ωF − ðEs − E0Þ. Because of the anharmonic energy
spacing of the fluxonium the frequency ωF can be chosen
to be very far off resonant for other possible transitions.
Inductive coupling via a quarter wavelength transmission
line gives a time dependent fluxonium-field interac-
tion ĤFF ¼ ðΩ=2Þjsih0je−iωFt þ H:c:, where the Rabi fre-
quency is Ω ¼ −ghsjϕ̂j0i and g depends on physical
properties of the transmission line and fluxonium [57].
Assuming other excited states are far detuned, Ĥimp in the
qutrit subspace is modified by V → V þ jΩj2=ð4δÞ, so V

can be reduced by choosing δ < 0. There are energy shifts
from off-resonant coupling to multiple excited states by all
three qutrit states. Optimizing ωF and g to minimize V
gives ωF ¼ 1.588EJ and jgj2 ¼ 0.2, so that g2elecg

2
mag ≃ 1.

Decoherence.—Spin decoherence limits the ultimate
size of the simulator. We envision starting in the gapped
product state jGð0Þi ¼ Q

linksj0i by tuning parameters to
the extremely strongly coupled regime (with Ω ¼ 0), and
adiabatically evolving the ground state to an intermediate
coupling regime. The adiabatic evolution could be done by
slowly increasing the driving field Rabi frequency over a
time Tsim and, as described below, nonlocal order param-
eters can be measured as a function of final coupling
strength [see Fig. 2(b)]. As shown in Ref. [47] (Sec. IIIB),
the ground state jGðtÞi is gapped throughout with energy
ΔEgapðtÞ ∼ 4g2elecðtÞ, and from the effective model Ĥeff is
minimal at V ¼ 0 where ΔEmin

gap ∼ 8J2=U. The decoherence
times for fluxonium tuned to the qutrit point have been
reported at T1 ∼ T2 ∼ 50 μs [53]. Consider U ¼ 0.032EJ
as above and choose EJ ¼ 40 GHz and Tsim ¼
2=ΔEmin

gap ¼ 0.135 μs. The inverted ancilla qubit lifetime
is Ta

1 ∼ 1 ms [53], giving an error rate per ancilla of
1 − e−Tsim=Ta

1 ∼ 10−4, allowing reliable simulations on a
lattice with ∼1000 link spins.
Nonlocal measurement.—The second key element of our

proposal is the measurement of spin-1 Wilson loop oper-
atorsWC ¼ Ŝþ ⊗ Ŝ− ⊗ � � � ⊗ Ŝþ ⊗ Ŝ− on C, and ’t Hooft
disorder operators ϒ̂ðφÞ ¼ e−iφŜ

z
0 ⊗ eiφŜ

z
1 ⊗ � � � ⊗ eiφŜ

z
n−1

on a line extending from a spin “0” on the boundary.
Importantly, the measurement does not alter the observable
being measured, and repeated measurements give the same
result; i.e., it is nondemolition. The idea is to prepare the
ground state of the spin-1 lattice Hamiltonian, turn off
Ĥimp, and then measure WC or ϒ̂ðφÞ. Thus, the measure-
ment can “quench” the system, in order to study the
ensuing dynamics and multitime correlations when the
Hamiltonian is turned on again [58].
To measure nonlocal operators, a subset of spins in

the array are coupled to a single microwave cavity mode,
Fig. 1(c). Ultimately, only a single qubit degree of freedom
need be measured, which is advantageous if the measure-
ment error is significant. By contrast, if spins were
measured independently the fidelity would decrease expo-
nentially with operator size.
We require a dispersive coupling of spins in a region R,

Ĥint ¼ −χâ†â
P

j∈R j0ijh0j, and a coupling between an
ancilla A (such as one of the ancilla qubits) and the bosonic
field, ĤA

int ¼ −χAâ†âjeiAhej, where â† and â are bosonic
creation and annihilation operators. Selectively addressing
cavity coupling within the region R or at the ancilla
location can be done by coherently mapping noninteracting
spins to noninteracting local states, which are far detuned
from the cavity coupling. In Ref. [47] (Sec. III) we describe
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in detail two methods to measureWC or ϒ̂ðφÞ. In brief, one
method uses a geometric phase gate, requiring only the
ability to prepare the vacuum state of the cavity and a
sequence of displacement operators and evolution gener-
ated by Ĥint. An alternative method can be done in a single
step but requires the preparation of a superposition of
vacuum and a single photon state of the cavity.
Fidelity.—To estimate process fidelity, we assume the

cavity has a decay rate κ, and system and ancilla spins
depolarize independently with an error rate γ. On n spins,
the geometric phase-gate measurement process fidelity is

FðgpÞ
pro ðθ;ΩÞ
> ηA½1 − nð4π þ 6θÞγ=jχj�
× ½1 − πΩκðe−3θκ=jχj þ e−θκ=jχjÞð1þ πκ=2jχjÞ=jχj�;

ð5Þ
where ηA < 1 describes the finite detection fidelity of the
ancilla spin. For measuring Wilson loops Ω ¼ π=

ffiffiffi
3

p
,

θ ¼ 2π=3, while for measuring ’t Hooft strings Ω ¼ π=2,
θ ¼ π=2. For the single photon implementation, the process

fidelity is FðspÞ
pro ðθÞ > ηp½1 − nð1 − e−γt̄ðθÞÞ�, where ηp ≤ 1

describes finite single photon detection fidelity, and the
mean gate time is t̄ðθÞ ¼ ½ð1þ e2θκ=jχjÞð2θÞ2κ=jχj2�=
ð2θκ=jχj þ e2θκ=jχj − 1Þ. In the presence of inhomogeneities
in the dispersive coupling strength χ, the error E for the
global gates with angle θ is E ≈ θ2jRjðjRj − 1Þϵ2=2, where
ϵ is the fractional cavity mode field variation across the
lattice (Ref. [47], Sec. IIIA).
Using transmons coupled to a 3D microwave cavity [60]

the following values were reported for one island: γ ¼
66.7 kHz, jχj=2π ¼ 99.8 MHz, κ ¼ 22.2 kHz. Single-shot
transmon qubit measurements have also been reported with
ηA ¼ 0.919 [61]. With efficient single microwave photon
detectors, the single photon protocol allows for a meas-
urement of a Wilson loop on n − 1 spins with fidelity

FðspÞ
pro > ηpð1 − 2.5 × 10−3nÞ. Microwave photon number

resolution can be achieved with ηp ≃ 0.90 [62,63].
Assuming similar parameters for fluxonium and local
addressability, using either the geometric phase gate or
the single photon gate, a Wilson loop of length 8 or a
’t Hooft string of size 10 could be measured with ∼90%
fidelity. By the nondestructive nature of the measurement,
the imperfect detection efficiency can be improved by
repeating the measurement until the presence or absence of
a photon is known with high confidence, enabling meas-
urement of much larger loops.
In summary, we provide a proposal for an analog 2þ 1D

QLM simulator using a 2D array of superconducting
devices. The simulator can be tuned between intermediate
and strong coupling regimes, and allows nondestructive
measurement of nonlocal, spacelike QLM order and dis-
order parameters, resolving an outstanding gap in other

proposals. Moreover, we provide a physical encoding of the
states for the QLM, where local electric field terms are
nontrivial. The protocol is rather robust to inhomogeneities,
allowing for implementations in superconducting arrays,
and we have presented numerical evidence that lattice QED
in “quasi-2”þ 1 dimensions exhibits confinement. Beyond
ground state characterization, the simulator can be used to
probe dynamics and measure the evolution of nonlocal
order or disorder parameters.

This work was partially supported by the ARC Centre
of Excellence for Engineered Quantum Systems EQUS
(Grant No. CE110001013). We also acknowledge financial
support from Basque Government Grants IT472-10,
Spanish MINECO FIS2012-36673-C03-02, UPV/EHU
Project No. EHUA15/17, UPV/EHU UFI 11/55 and the
SCALEQIT EU project. G. P. and D. V. acknowledge
support by the ERC-St Grant ColdSIM (No. 307688),
EOARD, UdS via Labex NIE and IdEX, RYSQ.

[1] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10,
2445 (1974).

[2] H. J. Rothe, Lattice Gauge Theories (World Scientific,
Singapore, 2012).

[3] X. G. Wen, Quantum Field Theory of Many-Body Systems:
From the Origin of Sound to an Origin of Light and
Electrons, Oxford Graduate Texts (Oxford University Press,
New York, 2004).

[4] G. ’t Hooft, On the phase transition towards permanent
quark confinement, Nucl. Phys. B138, 1 (1978).

[5] D. Horn, Finite matrix models with continuous local gauge
invariance, Phys. Lett. 100B, 149 (1981).

[6] P. Orland and D. Rohrlich, Lattice gauge magnets: Local
isospin from spin, Nucl. Phys. B338, 647 (1990).

[7] S. Chandrasekharan and U-J. Wiese, Quantum link models:
A discrete approach to gauge theories, Nucl. Phys. B492,
455 (1997).

[8] D. S. Rokhsar and S. A. Kivelson, Superconductivity and
the quantum hard-core dimer gas, Phys. Rev. Lett. 61, 2376
(1988).

[9] A. M. Polyakov, Gauge Fields and Strings (Harwood
Academic Publishers, London, 1987).

[10] Lattice QCD for Nuclear Physics, edited by H.-W. Lin and
H. B. Meyer (Springer, Heidelberg, 2015).

[11] T. Byrnes, P. Sriganesh, R. J. Bursill, and C. J. Hamer,
Density matrix renormalisation group approach to the
massive Schwinger model, Phys. Rev. D 66, 013002 (2002).

[12] M. C. Banuls, K. Cichy, K. Jansen, and J. I. Cirac, The mass
spectrum of the Schwinger model with matrix product
states, J. High Energy Phys. 11 (2013) 158.

[13] M. C. Banuls, K. Cichy, J. I. Cirac, K. Jansen, and H.
Saito, Matrix product states for lattice field theories, PoS,
LATTICE 2013, 332 (2013).

[14] E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and S.
Montangero, Tensor Networks for Lattice Gauge Theories
and Atomic Quantum Simulation, Phys. Rev. Lett. 112,
201601 (2014).

PRL 117, 240504 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 DECEMBER 2016

240504-5

http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1016/0550-3213(78)90153-0
http://dx.doi.org/10.1016/0370-2693(81)90763-2
http://dx.doi.org/10.1016/0550-3213(90)90646-U
http://dx.doi.org/10.1016/S0550-3213(97)80041-7
http://dx.doi.org/10.1016/S0550-3213(97)80041-7
http://dx.doi.org/10.1103/PhysRevLett.61.2376
http://dx.doi.org/10.1103/PhysRevLett.61.2376
http://dx.doi.org/10.1103/PhysRevD.66.013002
http://dx.doi.org/10.1007/JHEP11(2013)158
http://dx.doi.org/10.1103/PhysRevLett.112.201601
http://dx.doi.org/10.1103/PhysRevLett.112.201601


[15] B. Buyens, J. Haegeman, K. Van Acoleyen, H. Verschelde,
and F. Verstraete, Matrix product states for gauge field
theories, Phys. Rev. Lett. 113, 091601 (2014).

[16] P. Silvi, E. Rico, T. Calarco, and S. Montangero, Lattice
gauge tensor networks, New J. Phys. 16, 103015 (2014).

[17] L. Tagliacozzo, A. Celi, and M. Lewenstein, Tensor net-
works for lattice gauge theories with continuous groups,
Phys. Rev. X 4, 041024 (2014).

[18] T. Pichler, M. Dalmonte, E. Rico, P. Zoller, and S.
Montangero, Real-time dynamics in U(1) lattice gauge
theories with tensor networks, Phys. Rev. X 6, 011023
(2016).

[19] B. Buyens, J. Haegeman, H. Verschelde, and F. Verstraete,
and K. Van Acoleyen, Confinement and string breaking for
QED2 in the Hamiltonian picture, arXiv:1509.00246.

[20] J. Haegeman, K. Van Acoleyen, N. Schuch, J. I. Cirac, and
F. Verstraete, Gauging quantum states: From global to local
symmetries in many-body systems, Phys. Rev. X 5, 011024
(2015).

[21] S. Kuhn, E. Zohar, J. I. Cirac, and M. C. Banuls, Non-
Abelian string breaking phenomena with matrix product
states, J. High Energy Phys. 07 (2015) 130.

[22] E. Zohar, M. Burrello, T. B. Wahl, and J. I. Cirac, Fermionic
projected entangled pair states and local U(1) gauge
theories, Ann. Phys. (Amsterdam) 363, 385 (2015).

[23] E. Zohar and M. Burrello, Building projected entangled
pair states with a local gauge symmetry, New J. Phys. 18,
043008 (2016).

[24] H. Weimer, M. Muller, I. Lesanovsky, P. Zoller, and H. P.
Büchler, A Rydberg quantum simulator, Nat. Phys. 6, 382
(2010).

[25] L. Tagliacozzo, A. Celi, A. Zamora, and M. Lewenstein,
Optical Abelian lattice gauge theories, Ann. Phys.
(Amsterdam) 330, 160 (2013).

[26] A.W. Glaetzle, M. Dalmonte, R. Nath, I. Rousochatzakis,
R. Moessner, and P. Zoller, Quantum spin-ice and dimer
models with Rydberg atoms, Phys. Rev. X 4, 041037
(2014).

[27] E. Kapit and E. Mueller, Optical-lattice Hamiltonians for
relativistic quantum electrodynamics, Phys. Rev. A 83,
033625 (2011).

[28] E. Zohar and B. Reznik, Confinement and lattice quantum-
electrodynamic electric flux tubes simulated with ultra-cold
atoms, Phys. Rev. Lett. 107, 275301 (2011).

[29] J. Casanova, L. Lamata, I. L. Egusquiza, R. Gerritsma, C. F.
Roos, J. J. Garcia-Ripoll, and E. Solano, Quantum simu-
lation of quantum field theories in trapped ions, Phys. Rev.
Lett. 107, 260501 (2011).

[30] E. Zohar, J. I. Cirac, and B. Reznik, Simulating compact
quantum electrodynamics with ultra-cold atoms: Probing
confinement and non-perturbative effects, Phys. Rev. Lett.
109, 125302 (2012).

[31] D. Banerjee, M. Dalmonte, M. Muller, E. Rico, P. Stebler,
U.-J. Wiese, and P. Zoller, Atomic quantum simulation of
dynamical gauge fields coupled to fermionic matter: From
string breaking to evolution after a quench, Phys. Rev. Lett.
109, 175302 (2012).

[32] E. Zohar, J. I. Cirac, and B. Reznik, Simulating (2þ 1)-
dimensional lattice QED with dynamical matter using
ultracold atoms, Phys. Rev. Lett. 110, 055302 (2013).

[33] P. Hauke, D. Marcos, M. Dalmonte, and P. Zoller, Quantum
simulation of a lattice Schwinger model in a chain of
trapped ions, Phys. Rev. X 3, 041018 (2013).

[34] E. Zohar, J. I. Cirac, and B. Reznik, Quantum simulations of
gauge theories with ultra-cold atoms: Local gauge invari-
ance from angular-momentum conservation, Phys. Rev. A
88, 023617 (2013).

[35] K. Stannigel, P. Hauke, D. Marcos, M. Hafezi, S. Diehl, M.
Dalmonte, and P. Zoller, Constrained dynamics via the Zeno
effect in quantum simulation: Implementing non-Abelian
lattice gauge theories with cold atoms, Phys. Rev. Lett. 112,
120406 (2014).

[36] S. Notarnicola, E. Ercolessi, P. Facchi, G. Marmo, S.
Pascazio, and F. V. Pepe, Discrete Abelian gauge theories
for quantum simulations of QED, J. Phys. A: Math. Theor.
48, 30FT01 (2015).

[37] A. Bazavov, Y. Meurice, S.-W. Tsai, J. Unmuth-Yockey, and
J. Zhang, Gauge-invariant implementation of the Abelian
Higgs model on optical lattices, Phys. Rev. D 92, 076003
(2015).

[38] A. Bermudez and D. Porras, Interaction-dependent photon-
assisted tunneling in optical lattices: A quantum simulator
of strongly correlated electrons and dynamical gauge fields,
New J. Phys. 17, 103021 (2015).

[39] U.-J. Wiese, Towards quantum simulating QCD, Nucl.
Phys. A931, 246 (2014).

[40] E. Zohar, J. I. Cirac, and B. Reznik, Quantum simulations
of lattice gauge theories using ultra-cold atoms in optical
lattices, Rep. Prog. Phys. 79, 014401 (2016).

[41] D. Marcos, P. Rabl, E. Rico, and P. Zoller, Superconducting
circuits for quantum simulation of dynamical gauge fields,
Phys. Rev. Lett. 111, 110504 (2013).

[42] D. Marcos, P. Widmer, E. Rico, M. Hafezi, P. Rabl, U.-J.
Wiese, and P. Zoller, Two-dimensional lattice gauge theories
with superconducting quantum circuits, Ann. Phys.
(Amsterdam) 351, 634 (2014).

[43] L. Garcia-Alvarez, J. Casanova, A. Mezzacapo, I. L.
Egusquiza, L. Lamata, G. Romero, and E. Solano,
Fermion-fermion scattering in quantum field theory with
superconducting circuits, Phys. Rev. Lett. 114, 070502
(2015).

[44] A. Mezzacapo, E. Rico, C. Sabin, I. L. Egusquiza, L.
Lamata, and E. Solano, Non-Abelian lattice gauge theories
in superconducting circuits, Phys. Rev. Lett. 115, 240502
(2015).

[45] J. Kogut and L. Susskind, Hamiltonian formulation of
Wilsons lattice gauge theories, Phys. Rev. D 11, 395 (1975).

[46] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H.
Devoret, Fluxonium: Single cooper-pair circuit free of
charge offsets, Science 326, 113 (2009).

[47] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.117.240504 for analy-
sis on: large-N representation and duality transformation,
the implementation with fluxonia, measurement of non-
local order parameters, and gauge invariance and “dressed”
quantum states, which includes Ref. [48–50].

[48] A. M. Rey, G. Pupillo, C. W. Clark, and C. J. Williams,
Ultra-cold atoms confined in an optical lattice plus parabolic
potential: A closed-form approach, Phys. Rev. A 72, 033616
(2005).

PRL 117, 240504 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 DECEMBER 2016

240504-6

http://dx.doi.org/10.1103/PhysRevLett.113.091601
http://dx.doi.org/10.1088/1367-2630/16/10/103015
http://dx.doi.org/10.1103/PhysRevX.4.041024
http://dx.doi.org/10.1103/PhysRevX.6.011023
http://dx.doi.org/10.1103/PhysRevX.6.011023
http://arXiv.org/abs/1509.00246
http://dx.doi.org/10.1103/PhysRevX.5.011024
http://dx.doi.org/10.1103/PhysRevX.5.011024
http://dx.doi.org/10.1007/JHEP07(2015)130
http://dx.doi.org/10.1016/j.aop.2015.10.009
http://dx.doi.org/10.1088/1367-2630/18/4/043008
http://dx.doi.org/10.1088/1367-2630/18/4/043008
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1016/j.aop.2012.11.009
http://dx.doi.org/10.1016/j.aop.2012.11.009
http://dx.doi.org/10.1103/PhysRevX.4.041037
http://dx.doi.org/10.1103/PhysRevX.4.041037
http://dx.doi.org/10.1103/PhysRevA.83.033625
http://dx.doi.org/10.1103/PhysRevA.83.033625
http://dx.doi.org/10.1103/PhysRevLett.107.275301
http://dx.doi.org/10.1103/PhysRevLett.107.260501
http://dx.doi.org/10.1103/PhysRevLett.107.260501
http://dx.doi.org/10.1103/PhysRevLett.109.125302
http://dx.doi.org/10.1103/PhysRevLett.109.125302
http://dx.doi.org/10.1103/PhysRevLett.109.175302
http://dx.doi.org/10.1103/PhysRevLett.109.175302
http://dx.doi.org/10.1103/PhysRevLett.110.055302
http://dx.doi.org/10.1103/PhysRevX.3.041018
http://dx.doi.org/10.1103/PhysRevA.88.023617
http://dx.doi.org/10.1103/PhysRevA.88.023617
http://dx.doi.org/10.1103/PhysRevLett.112.120406
http://dx.doi.org/10.1103/PhysRevLett.112.120406
http://dx.doi.org/10.1088/1751-8113/48/30/30FT01
http://dx.doi.org/10.1088/1751-8113/48/30/30FT01
http://dx.doi.org/10.1103/PhysRevD.92.076003
http://dx.doi.org/10.1103/PhysRevD.92.076003
http://dx.doi.org/10.1088/1367-2630/17/10/103021
http://dx.doi.org/10.1016/j.nuclphysa.2014.09.102
http://dx.doi.org/10.1016/j.nuclphysa.2014.09.102
http://dx.doi.org/10.1088/0034-4885/79/1/014401
http://dx.doi.org/10.1103/PhysRevLett.111.110504
http://dx.doi.org/10.1016/j.aop.2014.09.011
http://dx.doi.org/10.1016/j.aop.2014.09.011
http://dx.doi.org/10.1103/PhysRevLett.114.070502
http://dx.doi.org/10.1103/PhysRevLett.114.070502
http://dx.doi.org/10.1103/PhysRevLett.115.240502
http://dx.doi.org/10.1103/PhysRevLett.115.240502
http://dx.doi.org/10.1103/PhysRevD.11.395
http://dx.doi.org/10.1126/science.1175552
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.240504
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.240504
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.240504
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.240504
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.240504
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.240504
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.240504
http://dx.doi.org/10.1103/PhysRevA.72.033616
http://dx.doi.org/10.1103/PhysRevA.72.033616


[49] L. Jiang, G. K. Brennen, A. V. Gorshkov, K. Hammerer,
M. Hafezi, E. Demler, M. D. Lukin, and P. Zoller, Anyonic
interferometry and protected memories in atomic spin
lattices, Nat. Phys. 4, 482 (2008).

[50] G. K. Brennen, K. Hammerer, L. Jiang, M. D. Lukin, and P.
Zoller, Global operations for protected quantum memories
in atomic spin lattices, arXiv:0901.3920.

[51] S. M. Girvin, Circuit QED: superconducting qubits coupled
to microwave photons, in Quantum Machines: Measure-
ment and Control of Engineered Quantum Systems, Lecture
Notes of the Les Houches Summer School Vol. 96, edited by
M. Devoret, B. Huard, R. Schoelkopf, and L. F. Cugliandolo
(Oxford University Press, Oxford, 2011).

[52] U. Vool, I. M. Pop, K. Sliwa, B. Abdo, C. Wang, T. Brecht,
Y. Y. Gao, S. Shankar, M. Hatridge, G. Catelani, M.
Mirrahimi, L. Frunzio, R. J. Schoelkopf, L. I. Glazman,
and M. H. Devoret, Non-Poissonian quantum jumps of a
Fluxonium qubit due to quasiparticle excitations, Phys. Rev.
Lett. 113, 247001 (2014).

[53] I. M. Pop, K. Geerlings, G. Catelani, R. J. Schoelkopf, L. I.
Glazman, and M. H. Devoret, Coherent suppression of
electromagnetic dissipation due to superconducting quasi-
particles, Nature (London) 508, 369 (2014).

[54] E. Fradkin, Field Theories of Condensed Matter Physics,
2nd ed. (Cambridge University Press, Cambridge, England,
2013).

[55] J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi,
G. Fitch, D. G. Cory, Y. Nakamura, J.-S. Tsai, and W. D.
Oliver, Noise spectroscopy through dynamical decoupling
with a superconducting flux qubit, Nat. Phys. 7, 565 (2011).

[56] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C.
Urbina, D. Esteve, and M. H. Devoret, Manipulating the

quantum state of an electrical circuit, Science 296, 886
(2002).

[57] N. A. Masluk, Ph.D. thesis, Yale University, 2012.
[58] It was proven in Ref. [59] that nondemolition measurements

of spacelike non-Abelian Wilson loops are not physical
because they would allow for faster than light signaling.
However, Abelian Wilson loops such as considered here
have no such obstruction provided the spins on the loop
have access to a shared entanglement resource, which here is
the common cavity mode.

[59] D. Beckman, D. Gottesman, A. Kitaev, and J. Preskill,
Measurability of Wilson loop operators, Phys. Rev. D 65,
065022 (2002).

[60] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G.
Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor,
L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret,
and R. J. Schoelkopf, Observation of high coherence in
Josephson junction qubits measured in a three-dimensional
circuit QED architecture, Phys. Rev. Lett. 107, 240501 (2011).

[61] Y. Liu, S. Srinivasan, D. Hover, S. Zhu, R. McDermott, and
A. A. Houck, High fidelity single-shot readout of a trans-
mon qubit using a SLUG micro-wave amplifier, New J.
Phys. 16, 113008 (2014).

[62] B. R. Johnson, M. D. Reed, A. A. Houck, D. I. Schuster,
L. S. Bishop, E. Ginossar, J. M. Gambetta, L. DiCarlo, L.
Frunzio, S. M. Girvin, and R. J. Schoelkopf, Quantum
nondemolition detection of single microwave photons in
a circuit, Nat. Phys. 6, 663 (2010).

[63] S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q.
Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G.
Johansson, Quantum non-demolition detection of a propagat-
ing microwave photon, Phys. Rev. Lett. 112, 093601 (2014).

PRL 117, 240504 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 DECEMBER 2016

240504-7

http://dx.doi.org/10.1038/nphys943
http://arXiv.org/abs/0901.3920
http://dx.doi.org/10.1103/PhysRevLett.113.247001
http://dx.doi.org/10.1103/PhysRevLett.113.247001
http://dx.doi.org/10.1038/nature13017
http://dx.doi.org/10.1038/nphys1994
http://dx.doi.org/10.1126/science.1069372
http://dx.doi.org/10.1126/science.1069372
http://dx.doi.org/10.1103/PhysRevD.65.065022
http://dx.doi.org/10.1103/PhysRevD.65.065022
http://dx.doi.org/10.1103/PhysRevLett.107.240501
http://dx.doi.org/10.1088/1367-2630/16/11/113008
http://dx.doi.org/10.1088/1367-2630/16/11/113008
http://dx.doi.org/10.1038/nphys1710
http://dx.doi.org/10.1103/PhysRevLett.112.093601

