

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Physical Review Letters

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa43599

Paper:

Vodola, D., Amaro, D., Martin-Delgado, M. & Müller, M. (2018). Twins Percolation for Qubit Losses in Topological

Color Codes. Physical Review Letters, 121(6)

http://dx.doi.org/10.1103/PhysRevLett.121.060501

Supplementary material

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa43599
http://dx.doi.org/10.1103/PhysRevLett.121.060501
http://www.swansea.ac.uk/library/researchsupport/ris-support/

1

Supplemental Material to “Twins Percolation for Qubit Losses in Topological Color Codes”

D. Vodola,1 D. Amaro,1 M.A. Martin-Delgado,2 M. Müller,1
1Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom.

2Departamento de Fı́sica Teórica I, Universidad Complutense, 28040 Madrid, Spain.

In this supplemental material we present important technical details as well as additional numerical results that are not shown in the main
text, which underline the functioning and effectiveness of the qubit loss recovery algorithm for a variety of 2D color code lattices. Specifically,
we start in Sec. I by providing background information on the 2D lattices and geometries we study numerically, and present in Sec. II schematic
examples of the different methods used to identify equivalent logical operators. In Sec. III we sketch the basic idea of protocol that has been
proposed in Ref. [S1] for the correction of qubit losses in Kitaev’s toric code, in order to highlight in more detail the fundamental differences
with the protocol we introduce in the main text for the color code. In Sec. IV we provide the details of why excitations of the merged and
reduced stabilizers as a result of the lattice reconstruction algorithm are correlated and can be removed deterministically and without the use of
a decoding algorithm. Finally, the algorithm used to compute the qubit loss thresholds is described in more detail in Sec. V and the numerical
results obtained for 2D color codes defined on hexagonal (6.6.6) lattices, as well as for 6.6.6 and 4.8.8. color codes on planar triangular lattices,
are presented and discussed.

I. COLOR CODE AND LATTICES

In this section we provide background information about color codes and about the lattices whose tolerance to qubit loss has
been benchmarked: color codes defined on 4.8.8 and 6.6.6 lattices in their triangular and square versions [Fig. S1].

As described in the main text, color codes [S2] are defined on 2D lattices where qubits are located on the vertices. The
underlying lattices are necessarily three-colorable and trivalent, so the plaquettes and their edges can be colored with colors
c = R,G, B in such a way that adjacent plaquettes have different colors c, and the color of each edge is complementary to the
two colors of the two plaquettes that share the edge. Instances of regular, translationally invariant lattices are the 4.8.8 lattice
[Figs. S1(a,b)], where plaquettes in the bulk are squares and octagons, and the 6.6.6 lattice [Figs. S1(c,d)], i.e. a honeycomb
lattice. The number of physical qubits Nq forming these lattices is computed as a function of the distance d: Nq = 2(d − 1)2 + 2
for the square 4.8.8 lattice [Fig. S1(a)]; Nq = (d2 − 1)/2 + d for the triangular 4.8.8 lattice [Fig. S1(b)]; Nq = 3d2/2 − 2d + 2 for
the square 6.6.6 lattice [Fig. S1(c)]; Nq = (3d2 + 1)/4 for the triangular 6.6.6 lattice [Fig. S1(d)].

Whereas these are translationally invariant lattices, the qubit loss correction algorithm and associated protocols introduced in
the main text also apply to more general lattices called colexes [S3], which may not have any discrete symmetry.

The code space C where logical qubits are encoded is determined by a set of stabilizer operators defined on the lattice. For
each plaquette P there are two stabilizers: S σ

P =
∏

j∈P σ j, where σ is a Pauli X or Z operator acting on all the qubits belonging
to a given plaquette. All stabilizer operators mutually commute given that every plaquette contains an even number of qubits
and different plaquettes share two or zero qubits. Thus, the stabilizer group S is generated by the set of independent stabilizer
generators and the code space C is the common +1 eigenspace of all stabilizers.

The topology of the surface where the lattice is embedded uniquely determines the number k of logical qubits in C, indepen-
dently of the system size and the bulk structure of the lattice hosting the code, via k = 4 − 2χ where χ is the Euler characteristic
of the surface. For instance, color codes defined on square lattices like the ones shown in Figs. S1(a,c) encode two logical qubits,
while the color codes on triangular lattices as the ones displayed in Figs. S1(b,d) encode one logical qubit.

(a) (b) (c) (d)

FIG. S1. Color code lattices studied for the qubit loss problem. (a) Square 4.8.8. lattice of logical distance d = 6 where the logical generators
can be defined along a blue and a green path traversing the lattice from the left to the right, and from the upper to the lower boundaries,
correspondingly. (b) Triangular 4.8.8. lattice of distance d = 7, with one red path. (c) Square 6.6.6 lattice of distance d = 8 where the red path
has a second level branching due to the action of the plaquettes marked with a grey circle. (d) Triangular 6.6.6. lattice of distance d = 9 where
the green path has a first level branching obtained by combining it with the green plaquette marked with a grey circle.

2

(e) (f) (g) (h)

(d)(a) (b) (c)

FIG. S2. Two instances of a 4.8.8 square color code with distance d = 6 and their shrunk lattices. (a) Square 4.8.8. color code lattice where
blue and green logical operators are defined. The dashed green path has been deformed into the solid green line by the action of the plaquettes
marked in grey. (b) Blue shrunk lattice with borders at the left and right sides of the lattice. The blue path goes from one border to the other.
(c) Green shrunk lattice where borders are at the top and bottom sides of the lattice and the two greeen paths go from one to the other. (d) Red
shrunk lattice. (e-h) A different instance of a square 4.8.8. color code, where the logical operators belong to the blue and red shrunk lattices.
We notice that in both instances in the blue and green shrunk lattices of a 4.8.8 color code, each plaquette is connected to another (or to a
border) by two links, while for the red shrunk lattice each plaquette is connected to another (or to a border) by only one link. The different
structure of the red lattice as compared to the blue and green shrunk lattices is related to a lower threshold for the existence of a logical operator
given by a percolating string [method (I) in the main text)].

In order to define the logical operators (generators) that generate the algebra of the encoded qubits it is convenient to introduce
the concept of a shrunk lattice. A color code has three shrunk lattices, one for each color. For instance, the green shrunk lattice
is obtained by placing a node at the centre of every green plaquette and connecting them through links [Figs. S2(c,h)]. Note that
every link in the shrunk lattice corresponds to an edge of the original lattice of the same color. In planar codes, every shrunk
lattice has at least two borders. The borders of a shrunk lattice consist of the qubits connected only through one link. For
instance, the blue borders (the borders of the blue shrunk lattice) in Figs. S2(b,f) are the left and the right sides of the lattice.
Borders can also consist of one qubit only. This is the case of the top right qubit in the triangular code of Fig. S1(b) and of the
four corners of the square lattice in Fig. S2(d).

Having the definition of border in mind, we call any set of qubits that goes from one border to the other in the shrunk lattice
of the color c [Fig. S2] a path Qc. All paths have in common that (1) they share an even number of qubits with every plaquette,
that (2) they share zero or an even number of qubits with paths of the same color. For each of the paths Qc, we can define
the operators Oσ

c =
∏

i∈Qc
σi for σ = X,Z that commute with the stabilizer group because of property (1). The 2k logical

generators Tσ
µ required for the k logical qubits, can be then identified by choosing among all the Oσ

c the couples that satisfy the
appropriate commutation and anticommutation relation for Pauli operators.

Importantly, two logical operators are equivalent if they differ by any element of the stabilizer S, i.e., if there exists a subset
V ⊆ S of stabilizer operators such that

T̃σ
µ = Tσ

µ

∏
S∈V

S . (S1)

Equivalent logical operators satisfy the same (anti)commutation relations and have the same effect on the encoded data, but they
have support on different sets of physical qubits Q̃c. In particular, if a qubit i is in Qc and a σ-stabilizer operator S σ

P has support
also on i, then T̃σ

µ = Tσ
µ S σ

P will not have support on i given that for Pauli operators σ2 is the identity.
In deforming a path Qc of a given color c, two general cases are found by choosing differentV. IfV is formed by plaquettes

of color c′ , c, the modified qubit set Q̃c will still be a colored path inside the shrunk lattice of the same color c and we say

3

that Q̃c is a deformation of Qc. For instance, in Fig. S2(a), the green dashed path has been deformed by red and blue plaquettes
marked with grey circles.

If instead V is made by plaquettes of the same color as c we say that the path Q̃c undergoes branching. For example, a
branched green path splits into a red and a blue string, which belong to their respective shrunk lattices. We call that a first level
of branching [see Fig. S1(d)]. In the same way, red and blue strings can branch again, like in Fig. S1(c), where the red string
branches into a green and a blue string, and we call this a second level of branching. This freedom in choosingV has been used
in the protocols described in the main text for finding a modified T̃σ

µ that does not have support on lost and twin qubits.

II. EXISTENCE CHECKS FOR EQUIVALENT LOGICAL OPERATORS

In this section we provide details about the three ways (I), (II) and (III) described in the main text to find a modified logical
operator T̃σ

µ by Eq. (S1) such that it does not have support on the set M of lost and twin qubits. We notice first that multiplying
Tσ
µ by stabilizers S σ′

P of the other type σ′ , σ is of no help for avoiding missing qubits. Therefore, it suffices to consider only the
multiplication with stabilizers of the same type. In this way we can simply consider the path Qc that defines the logical operator
Tσ
µ and conclude that Tσ

µ is still defined if there exists a set of plaquettes { P j } such that the modified path Q̃c obtained by

Q̃c = Qc

⊕
j

P j (S2)

does not include any missing qubits. The symbol ⊕ denotes the symmetric difference, that is defined as A⊕B := (A∪B)\ (A∩B)
on sets A and B. It is introduced because, for σ Pauli operators, σ2 is the identity and thus it ensures that Q̃c does not contain
qubits that appear an even number of times in the collection {Qc, P j }.

In Sec. I, we have seen that deformation and branching are the two strategies that paths have in order to avoid missing qubits.
For instance, in Fig. S3(d), the red path is deformed to avoid the two losses that fall on it, while in Fig. S3(c), the blue path must

(d)(c)

(b)(a)

FIG. S3. Square 6.6.6. lattice undergoing the loss of the qubits marked by white circles. (a) In this particular example, for each qubit that is
lost, a twin qubit marked by a yellow circle is chosen and also removed from the lattice. The dashed red and blue paths contain missing qubits,
so the red path can be deformed into the solid red line and the blue can undergo branching to avoid the missing qubits. (b) Reconstructed
lattice obtained with the protocol described in the main text. (c) Blue shrunk lattice. One can check that there is no blue path that goes from
one border to the other without touching a missing qubit, which means that the blue shrunk lattice does not percolate. However, a blue logical
operator manages to reach the other border by branching into the red and green shrunk lattices, and thereby without visiting any of the missing
qubits (losses and twin qubits). (d) Red shrunk lattice where the red dashed path contains two missing qubits, but it can be deformed into the
red solid path, which does not contain any losses or twin qubits. Therefore, for the shown scenario, this red shrunk lattice percolates.

4

branch to reach the other border. In order to study the robustness of color codes against losses, these two strategies were studied
in three different methods described in the main text: (I) simple deformation, i.e., when paths of a color c can be deformed only
inside the shrunk lattice of the same color, which is equivalent to a standard percolation check; (II) deformation and simple
branching, i.e., situations in which paths of a color c can be modified by only the first and second level of branching; (III)
searching exhaustively by use of Eq. (S2) also among all higher-level deformations and branching process, and therefore among
all equivalent paths generated by the action of the whole stabilizer group S.

Even though the number of equivalent paths grows exponentially with the number n of plaquettes, the search in (III) can be
efficiently performed by mapping the plaquette sets {P j} and the paths Qc into binary matrices and checking the solvability of a
system of linear equations that we are going to introduce below. To this end, recall that N is the number of physical qubits, n is
the number of independent plaquettes and

• let Qc = (q1, . . . , qN)T be a binary column vector where qi ∈ {0, 1} is chosen such that qi = 1 if the physical qubit i appears
in the path Qc, otherwise qi = 0;

• let P j = (p j 1, . . . , p j N)T be a binary column vector for j = 1, . . . , n with p j i ∈ {0, 1} and p j i = 1 if the physical qubit i
appears in the plaquette P j, otherwise p j i = 0;

• let A be a N × n binary matrix whose j-th column is equal to the column vector P j;

• letM = (m1, . . . ,mN)T be a binary column vector where mi = 1 if the i-th qubit is a lost or a twin qubit, otherwise mi = 0.

The symmetric difference between Qc and P j is then mapped, for the binary vectors, to Qc ⊕ P j where ⊕ stands for sum
modulo 2 and all the operations among binary matrices and vectors will be also performed modulo 2. Solving Eq. (S2) is then
equivalent to finding a row binary vector x such that the binary column Q̃c = Ax ⊕ Qc that represents the modified path Q̃c will
satisfyM ◦ Q̃c = 0, where the symbol ◦ denotes element-wise multiplication. This can be translated into the linear system

(M ◦ A)x = M ◦ Qc (S3)

where the existence of solutions for x can be found efficiently by by standard Gaussian elimination algorithms, for which the
runtime scales as ∼ N3 or less.

III. QUBIT LOSS IN THE KITAEV SURFACE CODE

In this section we briefly summarize main elements of the protocol pioneered in Refs. [S1, S4] to deal with qubit losses in the
Kitaev code [S5]. We recall that in Kitaev’s toric or surface code [Fig. S4(a)] the physical qubits reside on the edges of a lattice,
the stabilizer group is generated by four-qubit Z-type plaquette (purple) and X-type vertex (yellow) operators and the logical
operators correspond to product of Z (black) and X (gray) operator along non-trivial strings extending across the entire lattice.

(a) (b)

FIG. S4. Lattice structure of Kitaev’s toric or surface code. (a) Physical qubits (gray circles) reside on the links of a square lattice and the
stabilizers are defined on the plaquettes and vertices. Plaquette stabilizers are product of Pauli Z operators acting on the qubits in the plaquettes
like P and P′ marked in purple. Vertex stabilizers act with Pauli X operators on sets of neighbouring qubits (like V and V ′ marked in yellow).
The Z-type logical operator is defined on the black path going from the left to the right border and the X-type logical operator is defined on
the grey path going from the top to the bottom border. (b) According to the algorithm put forward by Stace et al. [S1], the lattice hosting the
toric/surface code can be reconstructed by merging the plaquettes P, P′ sharing a lost qubit into a super-plaquette P̃ like the one marked in
purple, and modifying the vertex sets V,V ′ into Ṽ , Ṽ ′ respectively to avoid the lost qubit. The X and Z logical operators are deformed by the
action of the plaquette P and the vertex V respectively to avoid the positions (edges) corresponding to losses.

5

3

1

2

4

5

q0

q1

1

4
2

3

(a) (b)

FIG. S5. (a) Subset Σ of the stabilizer group S showing four Z and X-stabilizers. The lost qubit q0 is depicted as a white circle and the twin
qubit is q1. (b) After the lattice is reconstructed the plaquettes are in an undefined state and excitations (represented as hollow circles) can
be present and must be removed. One possible correction for bringing the system back into the code space is a product of Pauli operators
acting on the qubits shown as black circles: this string of Pauli operators shares an odd number of qubits with each of the three new plaquettes,
therefore it anticommutes with the associated X/Z stabilizer generators of the complementary type Z/X, respectively.

Consider the lattice in Fig. S4(b), which is damaged by two losses marked as white circles. For each lost qubit q, which
is shared by two plaquettes P and P′, a new so-called super-plaquette P̃ = P ⊕ P′ that does not contain the lost qubit can be
introduced, instead of P and P′. The symbol ⊕ indicates the symmetric difference between sets A ⊕ B := (A ∪ B) \ (A ∩ B).
Additionally, the two vertex operators [V and V ′ shown in yellow in Fig. S4(a)], originally containing the lost qubit q, shrink
and are converted into three-qubit X-type stabilizers defined on the qubit sets Ṽ = V \ q and Ṽ ′ = V ′ \ q that do not contain q.
Overall, this defines a complete set of new stabilizers on the damaged lattice.

If a logical operator, like the one depicted in Fig. S4(a) with a solid line, has support on a loss, it can be deformed by the
action of one or more plaquettes [in Fig. S4(b) it is deformed by P] such that it percolates through the entire lattice. In the case
of the grey logical operator, it is deformed by the action of the vertex set V . This procedure will fail if finding a percolating path
is not possible anymore. Note that logical operators never undergo branching in the surface/toric code. Therefore, the boundary
between recoverable and non-recoverable losses is given in this case by the bond percolation threshold on a 2D square lattice,
that is known to be pc = 1/2 [S6].

IV. REMOVAL OF EXCITATIONS AND MODIFIED STABILIZER GROUP

After our algorithm for dealing with losses has been applied and the existence of logical operators has been checked so that
the logical information is not corrupted [steps (i, ii, iii) of the algorithm as outlined in the main text], the code will be in an
undetermined state as it might be affected by excitations (i.e. −1 eigenstates of the newly defined merged or shrunk X and
Z-type stabilizer generators). If needed, these can be annihilated by physically applying a Pauli correction along a chain of
qubits connecting the three new plaquettes, as shown in Fig. S5(b), or by a corresponding Pauli frame update on a software
level [S7, S8]. This excitation removal, to re-initialize the QEC on the reconstructed lattice within the code space, does not
require a decoder, is fully deterministic and iteratively applicable to more than a single qubit loss.

In this section, we will show how the excitations affect the stabilizers group S and what will be new stabilizers S′ after
removing them. One example of a reconstructed lattice affected by multiple losses is depicted in Fig. S3(b). We will describe
the case of one single qubit loss, as it is straightforward to generalize it to more than one lost qubit.

Consider the subset Σ = { BX
P , B

Z
P }P=1...4 ⊂ S for the section of the code reported in Fig. S5(a) and, say, the couple lost-

twin qubits is represented by the pair (q0, q1). In order to end up in a valid code space C defined by independent and mutually
commuting stabilizers, we have to build a new set Σ′ that has no support on q0 and q1. Let us define dimer operators Dσ = σq0σq1

with σ = X,Z. Since DX anticommutes with BZ
1 and BZ

4 , its eigenvalue εX = ±1 is undetermined and for updating the generator
set we replace BZ

1 with the product BZ
1 BZ

4 and BZ
4 with εXDX . In the same way, the operator DZ = Zq0 Zq1 anticommutes with BX

1
and BX

4 , so we replace BX
1 with the product BX

1 BX
4 and BX

4 with εZ DZ . We can now use the dimer operators DX ,DZ to decouple the
generators from the qubits q0 and q1. To do so, we multiply all the BσP that contain q0 and q1 by εσDσ. The final set of generators
is

Σ = { εσDσ, εσDσBσ1 Bσ4 , εσDσBσ2 , εσDσBσ3 , σ = X,Z } (S4)

and corresponds to the lattice reconstructed by the steps (i, ii) as well as the dimer formed by the lost and the twin qubit. This
set of generators Σ will be then split into two disjoint subsets, one containing the two dimer operators { εσDσ }, the other Σ′

6

0.1

0.2

0.3

0.4

0.5

0.00 0.05
1/d

(b) thresholds triangular codes∆(d)(a)

4.8.8
6.6.60.001

0.01

0.01 0.10
1/d

1/ν = 0.73 ± 0.06
1/ν = 0.71 ± 0.04

0 0.5p

f (p, 20)

6.6.6

4.8.8

FIG. S6. (a) Standard deviation ∆(d) of the distribution f (p, d) as a function of 1/d for the blue shrunk lattices of the 4.8.8 and the 6.6.6
lattices. For a code of distance d with a fraction p of losses, the quantity f (p, d)dp gives the probability that the lattice ceases to show a
percolating path for the first time [S6] An example of f (p, d) is represented in the inset for d = 20. For both the shrunk lattices, ∆(d) ∝ 1/d1/ν

with 1/ν ≈ 3/4. The points are fit by the solid lines scaling as 1/d3/4. (b) Critical threshold scaling in the limit d → ∞ for the triangular 4.8.8
and 6.6.6 lattices computed by solving Eq. (1) of the main text [equivalent to Eq. (S3)]. The values in the thermodynamic limit are represent by
point on the vertical axis and coincide with the ones computed for the corresponding square lattice [See Fig. 3(a) of the main text and Fig. S7].

0.1

0.2

0.3

0.4

0.5

0.00 0.05 0.10
1/d1/ν

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
p

0.25

0.50

0.75

0.00 0.05 0.10
1/d

(I) percolation

(III)Eq.(1)

percolation
Eq.(1)percolation

Eq.(1)

(a) thresholds (b) phase diagram (c) left qubits

FIG. S7. Numerical results for the critical threshold p∞ for the 6.6.6 square lattice. (a) Critical loss rate pc as a function of the lattice distance
d. Circles represent the percolating critical loss rate for the three shrunk lattices (points are fit by the solid lines scaling as 1/d3/4) while squares
represent the fundamental thresholds from Eq. (1) of the main text for the red shrunk lattice (points are fit by the solid line scaling as 1/d). (b)
Phase diagram as a function of the loss rate p for a lattice with d = 48 representing the probability of finding a percolating path (solid line)
and a solution of Eq. (1) of the main text (dot-dashed line). (c) Fraction of left qubits as a function of 1/d. Again, squares represent results
obtained from the algebraic method of Eq. (1) and circles are obtained with the percolating method.

having support on the remaining qubits of the reconstructed lattice [Fig. S5(b)]. The set Σ′ contains generators that are in an
undetermined state. In order to fix the state of the code, as all the three redefined σ-type generators show correlated excitations,
one has to measure only one generator for each σ and thus detect whether an excitation εσ = −1 is present. If it is the case, we
then need to remove the excitations by bringing the state back to the code space. For example, if εZ = −1, an X-type excitation
will affect the new-defined plaquettes and one possible correction will be the product of X-Pauli operators on the three qubits
as Fig. S5(b) shows. For more than a single loss, this argument can be easily iterated, with several binary unknowns ε being
introduced, one for each of removed dimer.

V. ALGORITHM FOR COMPUTING THE CRITICAL LOSS RATE AND NUMERICAL RESULTS

In this section we explain in more detail the algorithm used to obtain the loss thresholds at finite code distance d and in the
thermodynamic limit d → ∞. We also present the results for the triangular and the 6.6.6 lattices that are not discussed in the
main text. For each of the lattices in Fig. S1, we fix a logical distance d and find the critical loss rate pc(d) at which a logical
operator can no longer be found according to each of the three methods explained in the main text and with more detail in Sec. II
of this Supplemental Material.

We start by drawing a set of losses randomly with a rate p1 = 1/2. Then, we reconstruct the lattice by following the protocol
explained in the main text and after that we check if a logical operator still exists. If it is the case, the process is repeated, but
using a bigger loss rate p2 = p1 + 1/4, otherwise, the loss rate is reduced by the same factor p2 = p1 − 1/4. For each round,

7

the loss rate is increased (reduced) by half of the previous factor if we can (cannot) find an equivalent logical operator. The
algorithm scales only logarithmically with the number of qubits in the lattice and halts when the number of lost qubits in two
successive rounds does not change anymore. This algorithm gives a distribution f (p, d) of loss rates at which a logical operator
is found for the first time for a given fixed code distance. An example f (p, d) is plotted in the inset of Fig. S6. The distribution
f (p, d) can also be interpreted as the probability that the logical operator ceases to be defined if the rate of losses is increased
from p to p + dp. Finally, we take the mean value of f (p, d) as the critical loss rate pc(d) corresponding to the fixed distance d.

Regarding the methods (I) and (II) described in the main text and in Sec. II, in order to extract the value p∞ of the threshold
for d → ∞, we use a finite-size scaling analysis borrowed from percolation theory [S6]. For p near the critical value p∞,
the correlation length ξ, characterizing the typical size of a path connecting two random plaquettes, is known to diverge as
ξ ∝ |p− p∞|−ν for d → ∞ with an exponent ν that percolation theory predicts to depend only on the dimensionality of the system.
All the quantities showing a scaling law near p∞ are controlled by the ratio d/ξ, i.e. by a scaling variable z = (p − p∞)d1/ν. In
particular, let F(p, d) be the probability that a distance-d code affected by a rate p of losses shows a percolating path. Clearly,
the distribution f (p, d) we computed numerically satisfies f (p, d) = dF/dp.

For d → ∞, F will approach a step function with a discontinuity at p∞ that separates a region (p < p∞) where a logical
operator is always found from another (p > p∞) where it does not exist, while f will become a Dirac delta peaked around p∞.
For sufficiently large, but finite d and for p close enough to p∞, F(p, d) is expected to be a function only of z, i.e.F(p, d) = F(z)
and f (p, d) = d1/νdF(z)/dz. From the last equation, one can see that pc(d), i.e. the mean value of f (p, d), differs from p∞
according to

pc(d) − p∞ ∝ 1
d1/ν , (S5)

while the standard deviation of f (p, d) will scale as ∆(d) ∝ d−1/ν. We use these last two equations to compute ν and p∞ and
thereby to determine the thresholds for qubit losses for the color codes when using a deformed or a branched logical operator.

Figure S6(a) shows ∆(d) as a function of 1/d in log-log scale for the blue shrunk lattice of the square 4.8.8 and the 6.6.6 codes.
Similar plots are found for the other colored shrunk lattice. The slope of the curves gives the exponent 1/ν. Interestingly, one
can see that 1/ν for this generalized percolation problem takes the value of 3/4 expected for the standard percolation [S6].

When instead we determine the threshold by solving Eq. (1) of the main text [equivalent to Eq. (S3)], we also use Eq. (S5),
but with an exponent ν = 1 as no natural scaling law and thus critical exponent are expected.

A. Numerical results for the triangular codes and the 6.6.6 lattices

For the 4.8.8 and the 6.6.6 triangular codes, Fig. S6(b) shows the threshold rates obtained by solving Eq. (1) of the main text
[equivalent to Eq. (S3)]. The dot-dashed lines represent fits scaling as p∞ + b/d. For both the lattices, p∞ can be read on the
vertical axis.

Data for the 6.6.6 square lattice are reported in Fig. S7(a) that shows pc(d) as a function of 1/d1/ν computed via the methods (I)
and (III) described in the main text and in Sec. S3. Linear fits whose intercept yield p∞ are also drawn. As for the 4.8.8 lattice
the method (III), the one based on checking whether the system in Eq. (1) of the main text admits solutions, yields a higher
threshold. For a lattice with d = 48, Fig. S7(b) shows the probability of finding a red logical operator by using method (I), i.e.,
simple percolation and method (III). It then represents the phase diagram describing the boundary separating a region where the
qubit associated to the logical red operator can be successfully recovered from a region where it is completely destroyed. For
completeness, Fig. S7(c) shows the fraction of qubits left in the lattice as a function of 1/d. Notably, this number approaches
the limiting value of 50% when considering the solution of system of Eq. (1), demonstrating the high robustness of color codes
against qubit loss.

[S1] T. M. Stace, S. D. Barrett, and A. C. Doherty, Phys. Rev. Lett. 102, 200501 (2009).
[S2] H. Bombin and M. A. Martin-Delgado, Phys. Rev. Lett. 97, 180501 (2006).
[S3] H. Bombin and M. A. Martin-Delgado, Phys. Rev. B 75, 075103 (2007).
[S4] T. M. Stace and S. D. Barrett, Phys. Rev. A 81, 022317 (2010).
[S5] A. Kitaev, Ann. Phys. 303, 2 (2003).
[S6] D. Stauffer, Introduction to percolation theory (Taylor & Francis, London, 1985).
[S7] E. Knill, Nature 434, 39 EP (2005).
[S8] P. Aliferis, D. Gottesman, and J. Preskill, Quantum Info. Comput. 6, 97 (2006).

