14 research outputs found

    Genomic analysis of diet composition finds novel loci and associations with health and lifestyle

    Get PDF
    We conducted genome-wide association study (GWAS) meta-analyses of relative caloric intake from fat, protein, carbohydrates and sugar in over 235,000 individuals. We identified 21 approximately independent lead SNPs. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease ( ≈ 0.15 − 0.5). Relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood poverty (|| ≈ 0.1 − 0.3). Overall, our results show that the relative intake of each macronutrient has a distinct genetic architecture and pattern of genetic correlations suggestive of health implications beyond caloric content

    Genomic analysis of diet composition finds novel loci and associations with health and lifestyle

    Get PDF
    We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10−8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10−5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15–0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1–0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈−0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction

    Genomic analysis of diet composition finds novel loci and associations with health and lifestyle

    Get PDF
    We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 x 10(-8)), while five of the 21 lead SNPs reach suggestive significance (P < 1 x 10(-5)) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (r(g) approximate to 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|r(g)| approximate to 0.1-0.3) and positive genetic correlations with physical activity (r(g) approximate to 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (r(g) approximate to-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.Public Health and primary carePrevention, Population and Disease management (PrePoD

    Transport of optical excitations on dendrimers in the continuum approximation

    No full text
    We study the incoherent transport of optical excitations created at the rim of a dendritic molecule to a trap occurring at the core. The corresponding discrete random walk is treated in a continuum approximation, resulting in a diffusion-like process which admits semi-analytical solutions. The thus obtained arrival time distribution for the excitation at the trap is compared with the one for the original, discrete problem. In the case of an inward bias or even a weak outward one, the agreement is very good and the continuum approximation provides a good alternative description of the energy transfer process, even for small dendrimers. In the case of a strong outward bias, the mean trapping time, which sets the time scale for the entire distribution, depends exponentially on the number of generations in both approaches, but with a different base. The failure of the continuum approximation for this case is explained from the peaked behavior of the excitation density near the rim.

    Digestive plasticity in Mallard ducks modulates dispersal probabilities of aquatic plants and crustaceans

    No full text
    1. The consequences of plastic responses of the avian digestive tract for the potential of birds to disperse other organisms remain largely uninvestigated. 2. To explore how a seasonal diet switch in Mallard (Anas platyrhynchos L.) influences their potential to disperse plants and invertebrates, we recorded the retention time of markers, following exposure to two diets of contrasting digestibility (trout chow vs seeds). 3. We then recorded the retrieval and germination of Fennel Pondweed (Potamogeton pectinatus L.) seeds and Brine Shrimp (Artemia franciscana Kellogg) cysts ingested by the same birds. 4. Gut passage rates of markers were increasingly longer in birds on the seed-based, high-fibre diet and shorter in birds on the animal-based, low-fibre one. 5. Propagule digestibility, and thus survival to gut passage, differed between diet groups, with more seeds and fewer cysts retrieved from ducks on the animal-based diet. Germination decreased with retention time, but was not affected by diet. 6. Differences in passage rates of markers but not of seeds and cysts suggest no change in dispersal distances of plants and invertebrates between seasons, while differences in digestibility would affect the numbers of propagules dispersed. [KEYWORDS: Artemia franciscana ; diet switch ; endozoochorous dispersal ; Potamogeton pectinatus]
    corecore