32 research outputs found
Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes
Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed
Instability of coherent states of a real scalar field
We investigate stability of both localized time-periodic coherent states
(pulsons) and uniformly distributed coherent states (oscillating condensate) of
a real scalar field satisfying the Klein-Gordon equation with a logarithmic
nonlinearity. The linear analysis of time-dependent parts of perturbations
leads to the Hill equation with a singular coefficient. To evaluate the
characteristic exponent we extend the Lindemann-Stieltjes method, usually
applied to the Mathieu and Lame equations, to the case that the periodic
coefficient in the general Hill equation is an unbounded function of time. As a
result, we derive the formula for the characteristic exponent and calculate the
stability-instability chart. Then we analyze the spatial structure of the
perturbations. Using these results we show that the pulsons of any amplitudes,
remaining well-localized objects, lose their coherence with time. This means
that, strictly speaking, all pulsons of the model considered are unstable.
Nevertheless, for the nodeless pulsons the rate of the coherence breaking in
narrow ranges of amplitudes is found to be very small, so that such pulsons can
be long-lived. Further, we use the obtaned stability-instability chart to
examine the Affleck-Dine type condensate. We conclude the oscillating
condensate can decay into an ensemble of the nodeless pulsons.Comment: 11 pages, 8 figures, submitted to Physical Review
A Synoptic- and Remote Sensing-based Analysis of a Severe Dust Storm Event over Central Asia
Published by [Verlag nicht ermittelbar], Taina
Enhanced fluctuations of the tunneling density of states near bottoms of Landau bands measured by a local spectrometer
We have found that the local density of states fluctuations (LDOSF) in a
disordered metal, detected using an impurity in the barrier as a spectrometer,
undergo enhanced (with respect to SdH and dHvA effects) oscillations in strong
magnetic fields, omega _c\tau > 1. We attribute this to the dominant role of
the states near bottoms of Landau bands which give the major contribution to
the LDOSF and are most strongly affected by disorder. We also demonstrate that
in intermediate fields the LDOSF increase with B in accordance with the results
obtained in the diffusion approximation.Comment: 4 pages, 4 figure
Diet and subsistence in Bronze Age pastoral communities from the southern Russian steppes and the North Caucasus
The flanks of the Caucasus Mountains and the steppe landscape to their north offered highly productive grasslands for Bronze Age herders and their flocks of sheep, goat, and cattle. While the archaeological evidence points to a largely pastoral lifestyle, knowledge regarding the general composition of human diets and their variation across landscapes and during the different phases of the Bronze Age is still restricted. Human and animal skeletal remains from the burial mounds that dominate the archaeological landscape and their stable isotope compositions are major sources of dietary information. Here, we present stable carbon and nitrogen isotope data of bone collagen of 105 human and 50 animal individuals from the 5th millennium BC to the Sarmatian period, with a strong focus on the Bronze Age and its cultural units including Maykop, Yamnaya, Novotitorovskaya, North Caucasian, Catacomb, post-Catacomb and late Bronze Age groups. The samples comprise all inhumations with sufficient bone preservation from five burial mound sites and a flat grave cemetery as well as subsamples from three further sites. They represent the Caucasus Mountains in the south, the piedmont zone and Kuban steppe with humid steppe and forest vegetation to its north, and more arid regions in the Caspian steppe. The stable isotope compositions of the bone collagen of humans and animals varied across the study area and reflect regional diversity in environmental conditions and diets. The data agree with meat, milk, and/or dairy products from domesticated herbivores, especially from sheep and goats having contributed substantially to human diets, as it is common for a largely pastoral economy. This observation is also in correspondence with the faunal remains observed in the graves and offerings of animals in the mound shells. In addition, foodstuffs with elevated carbon and nitrogen isotope values, such as meat of unweaned animals, fish, or plants, also contributed to human diets, especially among communities living in the more arid landscapes. The regional distinction of the animal and human data with few outliers points to mobility radii that were largely concentrated within the environmental zones in which the respective sites are located. In general, dietary variation among the cultural entities as well as regarding age, sex and archaeologically indicated social status is only weakly reflected. There is, however, some indication for a dietary shift during the Early Bronze Age Maykop period
Frictional drag between quantum wells mediated by phonon exchange
We use the Kubo formalism to evaluate the contribution of acoustic phonon
exchange to the frictional drag between nearby two-dimensional electron
systems. In the case of free phonons, we find a divergent drag rate
(). However, becomes finite when phonon
scattering from either lattice imperfections or electronic excitations is
accounted for. In the case of GaAs quantum wells, we find that for a phonon
mean free path smaller than a critical value, imperfection
scattering dominates and the drag rate varies as over many
orders of magnitude of the layer separation . When exceeds the
critical value, the drag rate is dominated by coupling through an
electron-phonon collective mode localized in the vicinity of the electron
layers. We argue that the coupled electron-phonon mode may be observable for
realistic parameters. Our theory is in good agreement with experimental results
for the temperature, density, and -dependence of the drag rate.Comment: 45 pages, LaTeX, 8 postscript file figure
Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions
Archaeogenetic studies have described the formation of Eurasian 'steppe ancestry' as a mixture of Eastern and Caucasus hunter-gatherers. However, it remains unclear when and where this ancestry arose and whether it was related to a horizon of cultural innovations in the 4 th millennium BCE that subsequently facilitated the advance of pastoral societies in Eurasia. Here we generated genome-wide SNP data from 45 prehistoric individuals along a 3000-year temporal transect in the North Caucasus. We observe a genetic separation between the groups of the Caucasus and those of the adjacent steppe. The northern Caucasus groups are genetically similar to contemporaneous populations south of it, suggesting human movement across the mountain range during the Bronze Age. The steppe groups from Yamnaya and subsequent pastoralist cultures show evidence for previously undetected farmer-related ancestry from different contact zones, while Steppe Maykop individuals harbour additional Upper Palaeolithic Siberian and Native American related ancestry
Special aspects of the drop evaporation during radiant heating
The methods and results of an experimental study of the process of evaporation of a single stationary liquid drop upon radiant heat flux are presented. It is shown that the method of the drop fixation (levitation or fixing on the holder) slightly affects the rate of evaporation. A multiple increase in the rate of evaporation of drops of distilled water and ethyl alcohol is found when a colorant is introduced into the drop liquid to increase its absorption index
Micro- and nanoflows: modeling and experiments
This book describes physical, mathematical and experimental methods to model flows in micro- and nanofluidic devices. It takes in consideration flows in channels with a characteristic size between several hundreds of micrometers to several nanometers. Methods based on solving kinetic equations, coupled kinetic-hydrodynamic description, and molecular dynamics method are used. Based on detailed measurements of pressure distributions along the straight and bent microchannels, the hydraulic resistance coefficients are refined. Flows of disperse fluids (including disperse nanofluids) are considered in detail. Results of hydrodynamic modeling of the simplest micromixers are reported. Mixing of fluids in a Y-type and T-type micromixers is considered. The authors present a systematic study of jet flows, jets structure and laminar-turbulent transition. The influence of sound on the microjet structure is considered. New phenomena associated with turbulization and relaminarization of the mixing layer of microjets are discussed. Based on the conducted experimental investigations, the authors propose a chart of microjet flow regimes. When addressing the modeling of microflows of nanofluids, the authors show where conventional hydrodynamic approaches can be applied and where more complicated models are needed, and they analyze the hydrodynamic stability of the nanofluid flows. The last part of the book is devoted the statistical theory of the transport processes in fluids under confined conditions. The authors present the constitutive relations and the formulas for transport coefficients. In conclusion the authors present a rigorous analysis of the viscosity and diffusion in nanochannels and in porous media.