Abstract

We use the Kubo formalism to evaluate the contribution of acoustic phonon exchange to the frictional drag between nearby two-dimensional electron systems. In the case of free phonons, we find a divergent drag rate (τD1\tau_{D}^{-1}). However, τD1\tau_{D}^{-1} becomes finite when phonon scattering from either lattice imperfections or electronic excitations is accounted for. In the case of GaAs quantum wells, we find that for a phonon mean free path ph\ell_{ph} smaller than a critical value, imperfection scattering dominates and the drag rate varies as ln(ph/d)ln (\ell_{ph}/d) over many orders of magnitude of the layer separation dd. When ph\ell_{ph} exceeds the critical value, the drag rate is dominated by coupling through an electron-phonon collective mode localized in the vicinity of the electron layers. We argue that the coupled electron-phonon mode may be observable for realistic parameters. Our theory is in good agreement with experimental results for the temperature, density, and dd-dependence of the drag rate.Comment: 45 pages, LaTeX, 8 postscript file figure

    Similar works