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Frictional drag between quantum wells mediated by phonon exchange
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We use the Kubo formalism to evaluate the contribution of acoustic-phonon exchange to the frictional drag
between nearby two-dimensional electron systems. In the case of free phonons, we find a divergent drag rate
(7-51). However,r{)l becomes finite when phonon scattering from either lattice imperfections or electronic
excitations is accounted for. In the case of GaAs quantum wells, we find that for a phonon mean fe€g, path
smaller than a critical value, imperfection scattering dominates and the drag rate varie§a&dnover many
orders of magnitude of the layer separatthnWhen/ ;, exceeds the critical value, the drag rate is dominated
by coupling through an electron-phonon collective mode localized in the vicinity of the electron layers. We
argue that the coupled electron-phonon mode may be observable for realistic parameters. Our theory is in good
agreement with experimental results for the temperature, density,daddpendence of the drag rate.
[S0163-182608)03612-1

I. INTRODUCTION second layer to the driving current density in the first,

Interactions between particles are a cornerstone of much p21-J1=E>. (1)

of today's research in physics. In nuclear and high-energyne stronger the interlayer interaction, the larger the magni-
physics, the effects of these interactions can be probed diyge of the transresistivityIn this paper, we shall treat iso-
rectly through scattering experiments. In condensed-matteﬂcopiC systems at zero magnetic field, hepggis diagonal.
physics, interparticle interaction effects are enriched by therhe transresistivity is often interpreted in terms of a drag rate
close proximity of other particles giving rise to a plethora of yhijch, in analogy with a Drude model, is defined Iagl
fascinating phenomena. However, direct measurement 0£p21n1e2/m*, wheren; is the electron density of the driv-
these interactions in a condensed-matter system is often iRg layer andm* is the electron effective mass.
more difficult exercise, because of the indirect way in which "These experiments spurred a large body of theoretical
scattering amplitudes are related to observables. work both on electron-hole systefrend on electron-electron
Some time ago, Pogrebinskii and later Ptipeoposed the systems 1" Most of this work focused on interlayer Cou-
following direct probe of interparticle interac.tions t.hrough aJomb interaction, the most obvious coupling mechanism and
transport measurement. Place two two-dimensiof®D)  the one considered in the original theoretical papetew-
electron films close enough together and draw a current igyer, it was clear from the start that the experimental results

one film. Through interlayer interactions, net momentum iSyere inconsistent with a purely Coulomb interlayer interac-
transferred to electrons in the adjacent film, inducing a curyion,  which  predicted a  low-temperatdré-12

rent there which can be measured. Due to technological difg T<e¢_ ; er,, whereeg ; is the Fermi energy for layé
ficulties in contacting the individual layers, decades passef’ransresiétivity of the form

before the first frictional drag experiment between 2D and
three-dimensional3D) layers was performetiThe first ex- h\ ¢(3)m (kgT)? 1 1
periments on this phenomenon between two 2D systems, a&lz( - —2) ;
originally envisaged in Ref. 1, were performed by Gramila &7 32 eppera (Kead) (ke ) (QTFd)(qTFd()Z)
et al. for two electron layers;?* and by Sivan, Solomon, and
Shtrikman for an electron—hole systénin these experi- Where { is the Riemann zeta functior is the interlayer
ments a current is drawn in the first layer, while the secondeparationkg ; is the Fermi wave vector for layer andqg

layer is an open circuit. Instead of a current in the seconds the Thomas-Fermi screening wave vector of the 2D elec-
layer, there will be an induced electric field that opposes théron gas. This expression is based on the random-phase ap-
“dragging force” from the first layer. Theransresistivity = proximation(RPA) for the screened interlayer Coulomb in-
p1 is defined as the ratio of the induced electric field in theteraction and applies faged>1 andkg ;d>1.
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From inspection of Eq(2), one notes three important experiment. The similarity is not surprising because of the
characteristics of the Coulomb drag for low temperatuf®s: common appearance of the Bloch-Geisen temperature
the scaled transresistivipy(T)/T? is a constant(2) p,;isa  scale associated with the acoustic-phonon mode. Comparable
monotonically decreasing function of the density of eitherfeatures in the drag, associated with plasmon modes of the
layer (so long askg ;d>1); and (3) pcd 4. The experi- electronic system, were predictéd® and observed*® at
mental results at around 2-3 K, on the other handhigher temperatures.
showed*!8 (1) a well-defined peak in thp,;(T)/T?, (2) a In this paper we report on a detailed examination of the
local maximum inp,; near equal layer densities a8 an  Phonon exchange mechanism for drag, using a model which
approximate|yd-independent residuajZl, after subtraction We€ believe to be quantitatively reliable for GaAs/AlAs
of the Coulomb contribution which can be identified experi-guantum-well systems. We address the distance, tempera-
mentally by its simpled and T dependencies. Furthermore, ture, and d_ensity depe_ndence of the transres_istivity. We show
the experimentally measured magnitudeef was generally that two different regimes of layer separation dependence
larger by about a factor of 2 than the value predicted by thé&an occur, depending on the phonon mean free path and the
Coulomb interaction alone. Another momentum-transferelectron-phonon coupling constant. We demonstrate the ex-
mechanism was clearly involved. istence of a coupled electron-phonon mode, which for long

From the outset it was understood that exchange of acou§onon mean free paths leads to a large enhancement of the
tic phonons was the most likely candidate for this secondirag- _ .
momentum-transfer mechanism. Exchange of phonons often The outline of the paper is as follows. In Sec. Il we use a
dominates electron-electron scattering contributions to th&ubo linear-response formalism to obtain a formula for the
resistance of bulk metal$.The peak in the temperature de- transresistivity which is sufficiently general to permit the in-
pendence op,,(T)/T2 is reminiscent of features in the tem- Corporation of a finite phonon mean free path_ and renormal-
perature dependence of the acoustic-phonon-limited mobiZation of the phonon propagator due to coupling to the elec-
ity, and occurs around the Bloch-Greisen temperature troniclayers. In Sec. lil we discuss the phonon-mediate
Tee=2kg icke associated with the acoustic-phonon Interaction, and explain how the relatively weak electron-
modes (c, is the longitudinal acoustic-phonon velocjtfthe phonon interaction can Iead_ toa surprl_smgly I‘arge contnbu-
phase space available for scattering is largest for ans-  tion to the drag. The two different regimes of, are dis-
fers, partially explaining the enhanced drag whip;, cussed in Secs. IV and V, where approximate expressions for

=Kke,. Finally, the long-ranged exchange of phononé peP21 are derived, and special attention is paid to the layer

tween electrically isolated systems is not an unknown pheSeParation dependence of the drag. Detailed numerical re-

nomenon. Exchange of phonons between two 3D systerr%-”ts are presented in Sec. VI before we conclude in Sec. VI
separated by-100 xm was observed previousi),and re-  With @ summary of results.

lated effects are expected to be observable in a superlattice if

the driving electron layer is hét. The theoretical challenge Il. FORMALISM

'; to edxplam thel magnitude .Of thedodbseryed drag and its |yentical theoretical expressions for the drag rate due to
ependence on layer separation and density. Coulomb interactions were obtained in several different

lSllnc<|a mterakc_tlogs of achou?tlc pEonoEs with eI%(_:tror:js ar(%ays. The most physically transparent derivation was based
relatively weak in GaAs, the fact that phonon-mediated ang,, " gemjiciassical transport thedry.More elaborate fully

Coulomb cont_ribution to the drag are often Comparab"?quantum mechanical-derivations based on memory
seems mysterious. However, we show below that the Obv'functionlz or Kubo formula approach&s'® yield identical

ous calculation, in which a free-phonon propagator substizegits for the largde/ limit at zero magnetic field but are

tutes for the Coulomb interaction, leads to a divergent drag,, ¢ fiexiple and, in particular, can be applied in the pres-
resistivity. The large but finite drag rates which are observe%n

) . ) X nce of an external magnetic fieldHere /" is the electronic
experimentally can be explained in terms of scattering an ean free path\We show below that at lowest nonvanishing

mtel.\jractlpn egfects which alter the phor;onhpropagator:. oorder in the electron-phonon interaction, phonon exchange
espite the apparent importance of phonon exchange ifyq|qs an infinite result for the drag rate. The Kubo formula

drag measurements, there has been less theoretical work Bproach which we use in this paper, is most convenient

rls.me%hamsm rt]han on thﬁ Coulomz ?Ongr.‘gdrEecgamSWhen interlayer interactions need to be treated beyond lead-
tn |Inco grengp %non E)f[c ar;]geh mo et studie K ty raMidhg order, because of the powerful diagrammatic perturba-
etal. produced a drag rate which was too weak 10 accounf,,, heory expansion available to evaluate the influence of

E)r th?% o(tj)gerved dtrre]msresmpvﬁy.';sor,] VﬁS'IOpOEIOS’ _anfd interaction terms on the appropriate current-current correla-
eetersaddressed the question of wnether exchangaret -, fnction. The required calculation is an adaptation of

tual phonons could make a contribution strong enough Gy, ,se described in Refs. 13 and 15, and is outlined below.
explain the magnitude of the transresistivity, but did not use '

an electron-phonon coupling model which is realistic for
GaAs/ALGa,_,As systems. Zhang and TakahdSlincluded

all relevant phonon contributions; however, due to an incor- We consider frictional drag between two GaAs gquantum
rect effective two-dimensional electron-phonon interactionwells. We define the plane of the quantum wells asxhe

they predicted a short-range phonon-mediated drag. In spitglane. The distance between the centers of the two quantum
of the use of radically different models for the phonon-wells isd, and the width of the two wells is. We assume
mediated process, both these calculations yielded a tempertrat the electron number densities in each wejlandn,,

ture dependence for the drag in reasonable agreement witire such that only one subband of the quantum well is occu-

A. Electron-phonon interaction Hamiltonian
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pied. The formalism can easily be generalized to accommo- J,=0E;. (6)
date more occupied subbands.

We include interlayer and intralayer Coulombic electron-
electron interactions and the coupling of electrons in eithetn the absence of magnetic fields, and E; will be antipar-
layer to the 3D phonons of the semiconductor H83tve  allel, andc,; is a diagonal X 2 tensor.
denote 3D wave vectors by upper case letters, and their pro- The derivation sketched below fat,, is very similar to
jection onto thex-y plane by the corresponding lower case the one given previously in Ref. 15, in which the reader can
letter so thaQ=(q,Q,). The electron creatiotannihilation  find further details. The transconductivity is given by
operator in layef is ¢/ (k) [c;(k)] with implicit spin indices,
the phonon creatiofannihilation operator for polarization -
isa) o (a.0), and the subband wave function of electrons in ay _ e e
well T is (pi%z). With these definitions, the electron-phonon o1k )= 7 i (k). 0
interaction contribution to the Hamiltonian is given by

wherell5)"*(k,Q) is the Fourier transform of the retarded
N _ - - current-current correlation function, ardand v are Carte-
He pn=V""? = i=12q§(;4 M(4,Qz) Ay q.0,pi(— @) sian indices. The retarded correlation function is evaluated
T by the standard analytic continuation of tftsosonic Mat-
subara frequengyFourier components of its imaginary time
XFi(Qy), 3 counterpart® The imaginary time correlation function is cal-
culated in perturbation theory

whereV is the normalization volume,

<TT{S(ﬁ)J g(xv T)J :I)_/(XI ’ 7-,)}>0

37 (x—x",7—7")=—

e one [ ddeof7e 0 (s(B)) ’
Q)= | ddeal’e ; &
(4)
.24 :A +AT — L]
AQTAQT A -0 S(B)=Tf[ex;{—%fﬁﬁdf Hine(7) ] (8b)
0
(= ctkye (k , 5
pi(a) Ek: ci(kjci(k+a) ® where(--+), denotes a noninteracting system thermal aver-

age, andrl {---} is the usuak-ordering operator. Th& ma-
and M, (Q) is the bulk electron-phonon coupling constant. trix 1s expand_ed In powers Qf the interaction Hamﬂtomgn,
and the resulting noninteracting system correlation functions

At temperatures much lower than the Debye temperature%re evaluated with the aid of Wick's theorem. As usual, the

%T:rgigor:]eglggi&ig:_]klapp process in the eIecmn_phonodenom_inator i_n this expr_ession ca_ncels the “disconnected”
terms in the diagrammatic expansion.

If we include only electron-phonon interactions for the
moment, the lowest nonvanishing term appears at fourth or-
The Kubo formula for linear response offers an expres-der, and makes the following contribution to the current-

sion for the transonductivitytensor which is defined by current correlation function:

B. Kubo formula transconductivity

, V2A 4 (B (B B B B _
k=00, = - ["ar["ar, [ "ar, | "ar, [ "ar emion I 3 3 3 M@

Q1.M1 Q2.2 Q3.A3 Q4,04
><M)\Z(QZ)M)\3(Q3)M)\4(Q4)<Trj\%(q=017-);)l(_ql17-1)2)1(_q217-2)>0
X(T4£(a=0,0p2(— ds. 73) p2(— U, 74))oF 1( Q21 F 1(Qz2) F2( Q23 F2(Q2.4)

X <TT-21Q1 2 7'1):4Q2 PN Tz)JZ‘Q3 sl 7'3):4Q4 ra(T2))o, 9
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It will turn out to be important to account for disorder and
anharmonicity in the lattice system. We will do so using a
phenomenological approach by introducing a phonon mean
free path/p,. However, since the intrinsic bulk phonon
mean free path may exceed the dimensions of the sample, we
®i%) &iQ) should in principle tgke the su_rface scattering explicitly_into

’ account. For simplicity we will nevertheless use a single
-- > -- -- -> -- phenomenological mean free path and later, when we discuss
the long mean free path limit in more detail, take boundary
effects into account. The phonon Green’s function is then

(q.Q,i®)

DA(Qiwp) 200
yl (O] = Z il
N Topt (/27 gusgnn) P+ of o
(K+3,Q; ,iQ+iw) (13
_ _ ~ wherew, Q=c)\\/q2+ QZZ, and/,y is the phonon mean free
FIG. 1. The Feynmann diagram corresponding to the correlatio ath. '
function (11). The trianglegthe functionA) in each layer are con- Note that the wave-vector argumentsAn are 2D, since

nected by phonon propagatdwsiggly lines). The dots represent the A; is a property of the 2D electron systems. One can there-

e-ph coupling, and the dashed lines are external current operatorﬁ.)'re sum oven and integrate ove®, to obtain a phonon-
The frequencies and two-dimensional wave vectpase conserved . o 9 - z P
mediated effective interaction

in each vertex, whereas the perpendicular compon@ptand Q,
are independently integrated over.

dQ,
Dij(qviwn):f %; |M)\(Q)|2Fi(Qz)Fj(_Qz)

whereA is the 2D system area.
The Wick'’s theorem factorization of the phonon operator XD, (Qiiwp) (14)
product expectation value leads to the product of two bare M En

phonon Green'’s functions, defined by This effective interaction is the 2D Fourier transform of the
product of the phonon propagator between the layers and the
DY(Q,7— T')=—<TT{:4>\,Q( T);\A,—Q(T')Do- (10 electron-phonon interaction in each layer. With this defini-
tion, Eq. (1) becomes
It follows that, to leading order in electron-phonon interac-

tions -1 1
' Y k=0i0)= z -
I137(k=0,Q) INY: >

NK=0i0)= 7 S = 3 A%(~q,—q—iw
21 ' 2ARZ & B T X AY(—0,—q—i0—iQ,—iw)
lw
—iQ,—iw)AY(q,9,i0+iQ,i S .
@)Ai(a.q.e @) XA, q;iw+iQ,i0)Dy(qiw,)
dQ, : :
X | San 2 Fi(QFA(-Q) X Dyr( @i QpFi ). (15
40! This expression fofl,; is the same as in Ref. 15, except that
<M, (q, 2p0(q.Q, i f z the interlayer Coulomb interaction is replaced by the
IMA(0,Q2) D374 Q21 ) 2mh phonon-mediated effective interaction. From this point on,

the formal steps are identical to the Coulomb case. Perform-
X > F1(QNF(— Q) IM,/(0.QL)| ing the summation overw, continuing to real frequencies
o reen A e and taking thed—0 limit, we obtairt®

xD\%(q,Q,,i0+iw), (12) o2 = do | ong(w)
ay_—___ - 1 -
21T 553A zq fﬁm 27 |D21(9, 0 +i6) [ P
where
XAY(—0,—0,~w—id,—w+id)
S, s B A
A, 0wy, iwp)=—A 1JO drlfo d7XT.(q=0,0 XAY(Q,q,0+i8,0—i6). (16)
X p(d,71)p(—q,— 73))expli 0, 71) C. From transconductivity to transresistivity
Xexpio, ). (12 For further progress it is necessary to make some assump-

tions about the electronic systems. We will assume that the
The Feynman diagram corresponding to this contribution t@D electron layers are good metals with latge”, where/
the correlation functiorf11) is shown in Fig. 1. is the electronic mean free path. It can then be sHowT®
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that whenever the transport scattering times independent  terparts. However, the most essential higher-order terms are
of energy, the function is related to the electron polariza- those which account for the screening of both phonon-
tion function x(q,w) by mediated and Coulombic interactions. In the RPA, the total
interlayer screened interaction is given by
21'tr,i

Af=—579%Im xi(q,®). 17)

thal(q w)_ DZl(qaw)+U21(q)
K )=

Here m* is the electron effective mass. Relati¢t?) is a ! €(q,0)
property of the 2D electron layers only, and is not dependent
on the phonon degrees of freedom. Assuming further thaf/

|05 <o, the transresistivity can be approximated as fol-

: (20

hereU;;(q) is the unscreened Coulomb interaction, and

lows: €(q,@)=[1=(D11+U1) x1][ 1= (Dt U2 x2]
— oy — oy — (D21t Uz1)x1x2- (21)
pP21= ~ . (19
01020 01200 01102 (See, for example, Ref. 10. The form of the phonon-mediated

Using the Drude expressiowr{ =e2n; 7, /m*) for the intra-  interlayer interaction in this reference is incorrect, howe)yer.
layer conductivities, which is valid unoller the above assump-e(q’w.) IS t_he effective dlel_ectrlc function for mterl_aye_r In-
tions, the transresistivity due to the electron-phonon imerac}re]trearﬁgsgrsi!}[etrhaitiz'g.tcc\lfr:gigpeaénﬁgegat:%g?gglz:;g of
tion is given by the following explicit expression; simply the product of the dielectric functions for the two
— 42 1 ) layers, corresponding to independently screened electron-
lezm A Eq q phonon interactions in each Igyer. . . '
Coulomb and phonon-mediated interactions can be simul-
 dw , 1M x1(0,0)Im xo(q, o) taneously included in the transresistivity simply by replacing
xf E|D21(q,w)| SnPhal2keT) D by W2 in Eq. (19). Note that the transresistivity is not
_°° B strictly the sum of purely “Coulomb” and “phonon” con-
(19 tributions, since there are interference terms proportional to
U X D in the| W42, However, the Coulomb contribution is
The same expression for the phonon-exchange contribqar(‘:]e only forq=0.5, [U(q)=2me? exp(—qd)/qwhen the
tion to the drag can also be derived using semiclassicaipite thickness of the electron layers is negledtethereas
Boltzmann transport theory and a collision term with transi-qntriputions from theD term come predominantly from
tion matrix elements calculated by summing over virtual and_ 2ke . Hence the interference terms are usually negligible,
real intermediate states with absorbed and emitted phonong,q in practice we will treat the Coulomb and phonon con-
Ambiguities can arise in that approach, however, from th§ip tions as if they were incoherent. In what follows, we
portion of phase space where the relevant energy denomingg| concentrate on the “phonon contribution,” which will

tors approach zero. As we explain below this part of theye caiculated from Eq(19), with only the D term in the
phase spacts important in determining the drag resistivity.  ,merator

Our Kubo function derivation allows finite phonon mean free

paths, which remove any spurious singularities, to be incor-

porated into the calculation in a consistent and unambiguous Wy (q, @) = —

manner. €
Note that the explicit dependence of the transconductivity L , i

on the transport lifetime is absent in the transresistiign ~ NOte that it is important to retain the coupling between the

implicit dependence remains through the dependence of tHgPulomb and phonon terms i since this can influence the

polarization function on disorderThis aspect of the final d~2Kg contribution to the transresistivity.

expression, emphasized in recent work by Swierkowski, Szy-

Doy (22)

marski and Gortel,’ is not accidental, and emerges naturally I1l. PHONON-MEDIATED INTERACTION

in a force-balance approximation where the drag force sim- IN GaAs/AlyGa; _yAs SYSTEMS

ply cancels the rate of momentum transfer per particle from _ _ ) i

the current carrying layer to the open layer. As mentioned earlier, the acoustic-phonon—electron inter-

action is weak in GaAs and /ba, _,As. In this section we
discuss quantitatively what “weak” means, and explain how
phonons can make an important contribution despite this
In reality, electron-electron and electron-phonon interacweakness. In Sec. IV we discuss how and when screening
tions are simultaneously present, and both should be inaffects the phonon-mediated interaction.
cluded in a drag calculation. To leading order, Coulomb in-
teractions can be incorporated by simply addhghe
interlayer Coulomb interaction to the phonon-mediated ef-
fective interaction in Eq(19). One class of higher-order In GaAs/ALGa _,As systems, electrons couple to acous-
terms in which intralayer Coulomb interactions appear istic phonons via deformation potential and piezoelectric cou-
captured by replacing the electronic polarization functionsplings. Since we are concerned with low-energy excitations,
which appear in Eq(19) by their interacting system coun- only acoustic phonons in the long-wavelength limit have to

D. Coulomb interaction and screening

A. Electron-phonon coupling in GaAs/AlL,Ga; _,As
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be considered. In this limit, the squares of #iph coupling
strengths for longitudinal and transverse phonons®4are;
spectively,

_ﬁQ (ehl4)2
M(QP =550 |D*+ —gz A, (@3
_ﬁ(9h14)2
|Mt(Q)|2_WAt(Q)a (24)

wherep is the mass density of the crystal,is the deforma-
tion potential,eh,, is the piezoelectric constamt, are sound
velocities for longitudinal and transverse phonons, &pd
are the anisotropy factofs,

9q'Q;
A(Q)= S (259
2
a(Q)= S (25b

B. Approximate analytic form of D(qg,w)

While it is possible to obtain exact expressionsTofrom
Eq. (14) including the full anisotropy functiongEgs. (259

BONSAGER, FLENSBERG,
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Q,-dependent factors, except for the small energy denomina-
tor, from the integral which defineB. For example, one can
setQ,=0 in the anisotropy factors given in Egq25a and
(25b), yielding

A=0, A~z (26)

Then the phonon-mediated effective interaction for two
equivalent infinite square wells with width and center-to-
center separation af is

3Cpp
voDij(q,w)~— kF_L5”
LN T
P15 A
Ke
~Cre—— Byj(qdy1-.alvi-2).
qv1-¢f
(27)
Here, vo=m*/=74?, the two-dimensional electron-gas den-

sity of stategso thatyyD is dimensionless

0 i

and (25b] and the form factors for infinite square wells, §x:m+ 207 o’ (28)
these are extremely complicated. Therefore, we shall make P
some well-controlled approximations explained below which (ehy,)?m*
do not significantly affect the final results for the computed PE= g 72020k (29
transresistivity. mhTCOKe
As we shall see shortly, the phonon-mediated effective D2m* k.
interactions are important only whenis close toc,q. For CDP:W’ (30
thesew's the integral overQ, in Eq. (14) is dominated by mhCr e
contributions from neaiQ,=0. We therefore remove all and
|
2 2
T 3y 1 [e *2y_1]
y2+m? \ 20 272 y 2y y2+ 2
B.. = 1
§(x.Y) 2 \2sinfy) (31
exp(—X) Y vz I#]
|
In the expressions above, the square root with a positive real
part should be taken. voU;i(q) = (34

Inserting numerical values for GaAsn* =0.06M,, c
=5.14x 10° cm/s, ¢;=3.04x 10° cm/s, ¢ =5.3 g/cnt, ehy,
=1.2x10" eV/cm, andD=—13.0 eV}, gives the following
dimensionless coupling constants:

10 cm™
Cpe~1.64X10 X — —, (32)
F
3 kF
Cop=2.7X10 X 7o, (33

q —B;;(qd,qL),

whereqre=2me?v, is the Thomas-Fermi wave vectdkVe
have absorbed the bulk dielectric constant of the semicon-
ductor in the electron charge.

C. Strength of D,,;

For the RPA screened Coulomb interactidizgb,) in a
single-layer system, the magnitude @fUgpa approaches 1
at long wavelengths. Although the corresponding value for
double-layer systems is smalfeiit is useful to compare
voD,, to this value. For our present illustrative purpose we

For the same subband wave functions, the bare interlayeoncentrate on the deformation potential tefiira., the D2

and intralayer Coulomb interactions are given by

term in Eq.(23)], which turns out to dominate except for
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very low-density electronic systems. Then, in the limit of

vanishing quantum well widths and,,—, we obtain 10 ~ o8
+ ~ —
voD21(q, 0 +i7) CDquFCIZ = w?(qo)?
o
xexp—dVg?—w?c ?). (35 2 ..,
E g
Note that the magnitude of the effective interactiimerges & &
as q— w/c, from above or below[We point out that the Z 05 g
transresistivity is strongly dependent on the width and S v
therefore one should not take the-0 limit when comput- él_
ing D. We use the full form given by Eq27) in subsequent a N
numerical calculation. = %5 o5 | 05
The small prefactorCpp guarantees that the phonon- o-2ck, [10's"]
mediated effective interaction is small compared to the Cou-
lomb interaction except near~qc, . The large value of the
interaction in this region of phase space reflects the large
phase space for intermediate states with small or vanishing ‘ ‘
energy denominators whan~qc, . (Note that the phonon 0'Q1,0 0.0 1.0 20
energy varies slowly witlQ, for Q, near zero. a-2ck, [10°s7]

The importance for drag of the sharp peaklgy(q,w) is

enhanced by the fact that it appears Squar(-?d Ir(ZElq As a FIG. 2. The two-dimensional electron density of states times the

result, phonons do pl'ay an important role |n'fr|ct|onal drag,screened phonon-mediated interactigfD,y( 2k , )/ e(2ke , )|,

even though the typical value 0fyD2(q,@) is small. In 55 4 function of frequency near the longitudinal resonanmce

fact, if we ignore the effects of screening andAgt—, we  ~2¢k.. The dotted, dashed, and solid lines are fofy,

obtain an infinite transresistivity. This is easily seen from Eq.=0.1 mm, 0.3 mm, and 1 mm, respectively. Other parameters are

(35). The absolute valu®,, diverges like €,q— ) Y?as  d=500A andL=200 A, and the densitg=1.5x 10'* cm 2. The

w approaches, q from both above and below. Inserting this coupled electron-phonon mode occurs whenReD,;/Rq e]<

bare form of the interaction into Eq19) gives alc,q — 1 [see Eq(37)]. The inset indicates that for the given parameters

—w| ™! divergence in the energy-transfer integral for everythe coupled electron-phonon mode developsake when /

g, yielding aninfinite transresistivity. This point does not =0.5 mm.

seem to have been emphasized in the existing theoretical

literature on this subject. As we show in the next two sub- As we explain below, screening becomes important for

sections, including either a finite mean free path or screeninthe phonon exchange drag only if the phonon mean free path

the interaction dynamically removes this spurious diver-exceeds a critical valug y, oit. Since/ p orit is close to re-

gence. alistic values, we investigate the two regimes separately in
In Fig. 2 we plot vg|Dyy(2kr ,w)/e(2kg ,w)| near the the following two sections.

longitudinal resonance for different values6fj,. It is use-

ful to comparevy| D,/ €| to the screened interlayer Coulomb

interaction voU 51 rpacexp(—qd)/(1+are/g). In contrast to

the phonon-mediated interaction near the resonance, |n this section we focus on the large phonon mean free

voU>; rpadecreases rapidly below unity as a function of well path limit, where a coupled electron-phonon mode turns out

separation. Figure 2 partly explains how the “weak” to be of utmost importance. First we discuss the ideal case of

phonon-mediated interaction can compete with the Coulominfinite /o, Where the coupled mode is broadened by the

interaction as a mechanism for drag. coupling to the electronic system only. In this case we find

an analytic form for the coupled mode contribution. Second,

in Sec. IV B, we discuss how the collective mode contribu-

_ tion is modified by a finite mean free path and the conditions
From Eq.(27), one sees that the presence of a finitg  for its experimental observation.

cuts off the divergence and leads to a finite transresistivity.

Since the divergence in the integrand is of the forfwl/

—c,ql, it follows that p,; would be proportional to In(,)

if screening were not important. When screening is included, The approximate analytic results discussed below apply

the drag resistivity does not diverge. only for layer separations smaller than a large but finite
As shown in Eqgs(21) and (20), screening is accounted maximum value which we specify below; for still larger

for by dividing the bare interlayer interactidh(q,w) by a  layer separations the analytic analysis is less revealing, and

dielectric functione(q,w). WheneverD,,(q,w) diverges at we have relied more strongly on numerical studies.

w=C,(, S0 doese(q,w). The screened interaction is there- ~ We show below that for’y,— o, the real part ok(q, w)

fore nondivergent, even whefi,,— . vanishes, and the imaginary part is small enough to yield a

IV. LONG MEAN FREE PATH LIMIT

D. Effect of screening

A. Infinite phonon mean free path limit
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sharp collective mode fap just belowqc, which contributes 43c,q3C2
strongly to the frictional drag between the two layers. To = TS bP (41
make the following discussion as transparent as possible, we €oKF

limit our attention to the case of identical electron layers so\gte that the width of the resonance is small compared to the
that D,=Dyy andUy;=Up,. We locate the collective mode ghift of the resonance frorq and that the resonance line
frequencywq(q) by solving the equation Re(q,wg)]=0. We

will be interested in momentum transfers ned 2vhich

; - e
make the main contribution to the drag and systems with ; . X

Numerical calculations discussed below demonstrate that
ked>1 so that we can negleddy(q)ocexp(-2ked). The for /;n—o° the drag is dominated by coupling associated

small layer separation approximation mentioned above con-. \ . . e
sists of settingDy;~Dy,=D in Eq. (21), which is justified with this collective mode resonance. Since the effective in

shape is approximately Lorentzian onlydft<1. Where this
ondition is not satisfied, Eq40) will not be accurate.

teraction has a more rapid frequency variation than other

for guantities in the expression for the transresistiliy. (19)],
1+ qre/2Ke we may approximate the screened interaction near the reso-
< TDPkF =dg, (36) nance by as function:
as we show later. With these assumptions ) C|q3C%p
|voWo1(q, @) = = Tow=w). (42
D,y(q,w) F€O
Wa(q, 0)~ 1= 1= oDy (37) _ o . .
(1=U1x)(1-Upx X) This approximation allows the frequency integral in EP)

The collective mode in which we are interested occurs neal® bﬁ performed, and the contribution from the coupled mode
w=Cq<vgq, and hence is in the low-frequency regime for to the transresistivity may be expressed as

x(0,w). Herevg is the Fermi velocity of the electronic sys- " o

tem. We therefore approximate R&,w)~x(q,w=0)= EZ) Z_K” f (q_3> vo Im x(4,6,9) ,

—vo. We write the imaginary part of the polarization func- e’/ n°kgT sinit(f.c,q/2kgT) w3
43

€0
tion in the form Imy(q,w)=—1,9. In the low-frequency
limit of the RPA, E(q,c|q)~c,/(vF\/l—q2/4k2F), except wherea=6 for the longitudinal phonons ane=2 for the

near Xg, where it is approximately/c,/2v¢. 3 is dimen-  transverse phonons, and where
sionless and has a wave vector and frequency dependence

P21\~

0

4
which will be left implicit in the following discussion except K= D (443
where emphasis is important. However, it is important for (477)3c|392’
the following discussion thab(q,c,q) is generally small .
compared to 1. _ hi(ehyy) (44b)
Because we are interested in large wave vectors gear ‘_210773ct392'

=2k we include only longitudinal deformation potential 6 3 _ _ o
coupling. The calculation including transverse piezoelectricThe q°/ €, term in the integrand above implies that for
mode followsmutatis mutandisFrom Sec. Ill we have, fon = Tgs=2AC ke /kg, the main contribution to the integral

close to but smaller thagq, comes from theg=2kg region; i.e., large-angle scattering
dominates the phonon-mediated drag.
—Cpp Comparing with Eq.(2) we see that, at least for
roWay(q, ) = /pn—%, the phonon-mediated drag can be compar-

60<E60\/1—w2/02| q2—2CDp)—i2CDP'5 able to or stronger than Coulomb drag, in spite of the
q weak electron-phonon interactions. Crudely the condition
(38) which needs to be satisfied is thdkg is low enough
In this equationey=1+q1:/q is the RPA static dielectric or the layer separation is large enough tmﬁp\/c,/vF
function for an isolated layer. The collective mode occurs=(kgTgs/€er)2(qred) ~2(ked) ~2. For typical layer densities
where the real part of denominator of H88) vanishes at  in GaAs, this condition is satisfied for layer separations
larger than a few tens of nanometers, consistent with experi-
2qCpp|* mental observations. When phonon-mediated drag is domi-
keeg | - nant, p,; will be proportional to temperature foF>Tpgs.
) _ i Below Tgg there will be a crossover to a regime where the
This collective mode results from coupling of the electronpiezoelectric contribution dominates and the temperature de-
layers to phonons with close toc,q. Expanding the de- pendence goes approximately B This can be seen from
nominator of Eq.(38) around the pole, we find that fab  £q (43) by defining an integration variable proportional to

wo=C({ 1_( (39

close tow, g/T, and taking theq dependence o, into account. We
32 shall discuss this further in Sec. VI A. At extremely low
| Was(Q w)|2_C|q Cop r (40) temperatures, the assumption that the drag rate is determined
oVV21\Y4» -

by the resonance=c,q will break down.p,, is then domi-
nated by thes=0 limit of D,; and will revert to the familiar
where the width of the collective mode resonance is given byl? law for carrier-carrier scattering in a Fermi liquid.

K23 (0= wo)?+T?
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Recall that we use®,,~D;, to obtain the above results. comes large enough for R=0 to have a solution, and the
From Eq.(27), collective mode ceases to exist. This critical value is given

by
Dia,
%00 D]t — 29 E T woTo@]. @5) ¢ (Ltardzke)’
D1 g,w0(q)] -

/ = = y
o aCTE a2k

(48)

Hence, for the a—pprommatlo@n Dy~0to b? valid, one where, since large momentum transfers dominate the drag,
m_ust _have ad 2(1.7 wo/C0)<1. ngether with Eq(39_), we have setj=2Kkg. /it IS €ven longer at smalley’s,
this gives the condition E436). For 7/ py—c°, the preceding 44 it seems improbable that the collective mode discussed

approximate calculation implies that there is no layer sepag, gec 1)) would ever be evident in inelastic light scattering
ration dependence until this length, which for GaAs and typi-gygies of long-wavelength electronic excitations. In GaAs,

- and forke~10° cm™2, the critical mean free path is approxi-

cal densities correspondsdoe-5000 A, is reached. Numeri-
cal results show, however, that there is a weak d'StanCﬁwately/phycmw0.2 mm. The actual mean free path of course
depends on the sample in question.

dependence on the transresistivity in this largeegime.
This stems from the presence of a relatively long non- It is often the case that scattering of phonons off the

Lorentzian tail forw<c,q which contributes significantly to  ,,ngaries of the sample can be accounted for by taking the
the integral, as we will discuss below. mean free path in the absence of bulk scatterers to be equal

At larger layer separations, the interlayer phonon propag, the sample size. We argue below that for the present prob-
gator Dy, is reduced at the collective-mode frequency andgm the sample size in thedirection is usually irrelevant,

fche two electron layers interact with the phonqn system more .\ that the maximum mean free path is given by the typi-
independently. We must then use a more refined expres&c&l"y larger lateral dimension of the sample.

for the effective interaction: The phonons which contribute to the coupled mode are

those which are confined around the two-dimensional elec-
Dx(q,w) (46) tron gase$2DEG’s). The extent of the confinement is given
(1-[U 1+ Dyilx)>—Dox?’ by rangeD,; in the z direction (i.e., perpendicular to the
2DEG’s). To study thez-direction range of the phonon field
A competition occurs between a decline in the coupling dugparticipating in the collective mode, we look more closely at
to suppression of the interlayer propagafay and resonant  which z region actually contributes to the coupling. We write
enhancement of the electron-phonon interaction near eadhe effective phonon-mediated interaction given in Eg)
electron layer. as

Wy1i(q, w)~

B. Coupled electron-phonon mode with finite mean free path Dyy(Q, w+i 5)=j dz dZ|e,(2)|?|¢1(2')]?

The above analysis is based on phonons with an infinite
mean free path, apart from the finite lifetimes due to interac- xXK(q,0+i6,2—-2"), (49
tions with the electronic layers. Any real system will have
imperfections which will make the phonon lifetime finite
even when the electron layers are not present. Even when t
lattice is perfect and free of isotopic impurities, anharmonic-

where K(q,w+i6,z—2") is the Fourier transform of the
honon Green’s function and the electron-phonon coupling
atrix element with respect tQ,,

ity and boundary scattering will cause phonon modes to de- dQ, .
cay. In the following we represent all these effects in the K(q,w+i8,2)= >, J > he'QZZD)\(Q,w+i5)|M>\(Q)|2.
simplest possible way by assigning a common phenomeno- A .

logical mean free path , to all modes. (50)

The occurrence of coupled phonon-plasmon collectiveror a givenq and w, the spatial extent in the direction of

modes, signaled by by a zero in the[R@,w)], requires a  K(q,w+i8,2) gives the range of the phonon field. Since the
cancellation between phonon-mediated and Coulomb intel'conective_mode frequencies are very closede: cq, the

action contributions. In the present section we will considefrelevant phonon wave vectors in taedirection are small,

the limit in which the phonon-mediated contributions to and the same approximations used previously can also be
€(q,0) can be neglected, i.e., the limit in whigloD|<1  applied here, yielding an approximate form #rgiven by

for almost all energy and momentum transfers and for bottgq. (35) with d replaced by|z— 7’|, i.e., K(q,w+ 8,2—2')

intralayer and interlayer propagation. We will see that this_ exp(_lz_zf|\/m|2). The spatial extent of the pho-
condition is satisfied except at long phonon mean free pathg,q, field participating in the collective mode can be found

For w close toqc; and finite/, (but large compared to o pstituting the frequency for modey into this exponen-

qa-h, tial form, giving K ~exp(—|z—Z'|/dg), wheredg was defined
previously in Eq.(36). For GaAs an=1.5x10" cm™?, dg
|voDy1 =~ (qCpp k)| V1— &7 2. (47)  is approximately 5000 A. Any boundaries or imperfections
beyond this range in the direction have a negligible effect.
where ¢, is defined in Eq.(28), and 1- 5,2%1—(w/qc,)2 It is plausible that some existing experimental results are

+i/q/pn. There is a critical value/ it such that 1 for samples with/y, in the lateral direction comparable to
—(wolci9)?= 1197 oh erit» In which casdg Ra[D”-]l never be- this critical mean free path, and hence partially reflect col-
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lective excitations of the electron-phonon system. However, Recalling thathiw is the energy transferred between the
more experiments are needed before definite conclusions céayers, andi wq is the energy of the intermediate phonon,

be drawn. when the denominator vanishes in E§2) energy is con-
served in the intermediate state. Therefore, the (iesgi-
V. SHORT PHONON MEAN FREE PATH LIMIT nary) part of the term in the square parentheses gives the

virtual (rea) phonon contribution. In analogy, we define the
In the present section, we will consider the limit in which virtual-phonon exchange contribution to the effective inter-
phonon-mediated contributions t§q,w) can be neglected, action as the contributions from Rein Eq. (14), and the
i.€.,/ oh<</pncrit- We begin our discussion by addressing thereal-phonon exchange contribution as that fromDmignor-
distinction between the real and virtual phonon contribu-ing the anisotropy factors in the phonon matrix elements for
tions. This we do partly due to somewhat confusing use othe deformation potential, it turns out that in thg,—

these terms in the existing literature. limit, the entirew< c|q contribution toD,, is “virtual” and
the entirew>c,q contribution is “real.” In general, the di-
A. Real and virtual phonons vision between the contributions are not so clearcut; at a

given w andq both virtual and real contributions could exist
Simultaneously.

In a semiclassical transport theory, real-phonon processes
result in a nonequilibrium distribution of phonons in a
Soupled electron-phonon Boltzmann equation. In Appendix
A we derive an expression for the real-phonon exchange
contribution to the drag resistance using such a coupled
R . Boltzmann equation approach, and explicitly demonstrate its

(i[Heprl {1 [He.pnl f) equivalence to the purely real-phonon contributiorDgf to
DZl(q'“’):zl: E,—E+in (52) the drag. The appearance here of both virtual- and real-
phonon contributions to the transresistivity in a single Feyn-
Hereli), |f), and|l) are the initial state, the final state in man diagram is reminiscent of the appearance of both con-
which momentum has been transferred between the layertjbutions to the quasiparticle scattering Fa@? in the
and an intermediate state in which the momentum to b@honon exchange contribution to the electron self-energy of
transferred is carried by a nonequilibrium phonon. The in-a 3D electron-phonon system.
finitesimal imaginary parf» in the denominator enforces
causality?® and plays a crucial role when intermediate and B. Reciprocal-space calculation

initial or final states are close in energy. In time-dependent . _ . .
gy P In the following subsections we elucidate the physics of

perturbation theory, this form of effective interaction deter- q : h h ¢ hs. Whe
mines the transition rate between initial and final states wheH'€ drag for short phonon mean free paths. Whep
</ oncit» WE can set the;; factors in the expressioa to

the perturbing term in the Hamiltonian, the electron-phonon™ . : o .

interaction in the present case, does not directly couple initiagf€"©- The screened interlayer interaction is then simply

and final states. We therefore expect the phonon-mediated

effective interaction to play the same role in transport experi-

ments as the interlayer Coulombic interaction whibbes Wis(Q, )~ D9, @) _Dx(q,0) (59

have direct matrix elements between initial and final states. 21 1-U(q)x(q,0))? e

The intermediate state need not conserve energy, and, in the

jargon of time-dependent perturbation theory, is conse-

quently referred to as a virtual state. where we have taken the static limit qf appropriate for
The intermediate states are ones where a phonon of méémperatures comparable Tgi . The transresistivity is then

mentum Q=(q,Q,) has been created or destroyed by angiven by

electron in layer 1 or 2. Summing over four intermediate

states for eacl),, and performing thermal averages, gives

the following expression for transition matrix elements with —h?

2D wave-vector transfey: P2U™= 82620 nokgT

The phonon-mediated effective electron-electron interac
tion D,4(q,w), obtained here from diagrammatic perturba-
tion theory, can also be derive@vith a little more work
using elementary time-dependent perturbation theory startin
from an expression of the forfh

» Im ,Cig)Im ,C 1
Xf dac? x1(d,c,9)Im x»(q,c|q)
0

Q. inkP(2c,q/2kgT 2.2
DZl(q"”):f o IM{(Q)?F1(Q)F2(—Qy) pr— sinfr(#.¢,q/2kg T) Yo€o
1 Xf dw|voDy(q,w)|%. (59
_ 0
- ' } (52
otwg—In

We have factored terms which vary slowly with respectto
out of thew integration, sincéD,4(q,w) is relatively sharply
Equation(14) reduces to this form for’,,— =, except that peaked around=cq.
we have, for simplicity, retained only the longitudinal From Eqgs.(27) and(31), vqD;, for w~c,q is given ap-
phonons in the present discussion. proximately by
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— 02Copf el @)exp —dq)/(keQ), q-wle>/ 5t

- - ~ ~ P 55
02Copfoul @) EXPid T — wd/2e)/ )/ (IKeG),  @/CI—=a>7 i, 59

voD21(q, w)=

whereq=|g2— (w/c))3|"2 andf.,(q) is a function(depen- ~ and Eif)= /" _.dt expg)/t is the exponential integral, which

dent on the form factgrwhich cuts off atq~L 2. has the limiting behavior
In the c,g> w case, the effective interaction is dominated
by virtual phonon exchange, whereas, in the-c,q case, . In(x), 0<x<1
the integral is dominated by energy-conserving intermediate Ei(—=x)~ —exp—x)/x, x>1 (58
states and the effective interaction is due to real-phonon ex- ' '
change. The analytic expression for the integral is compli-
cated in the small region whefte—c,q|<c,//,, and we
ignore it in our treatment below. The smallet,, is, the  The upper cutoffy q reflects the fact that it is impossible to

wider this region becomes, and hence the expressions dgxcite phonons with a-wave vector larger thabh 1. Theq
rived below are not quantitatively valid for small,, (below  jntegration in Eq.(56) can by physically interpreted as fol-
10" nm for typical parameters in Gafishowever, the ex- |ows. The velocity component of a phonon in thelirection

\?vrl'?sslocgsmszfgj tt% i)ijhrkb:rictzgtla Ccsgljgtﬁg#:“é%g\ée fc?fhsi\q/:acl)(s approximately:ﬁ/q, and hence the time taken to travel a
P distanced in the z direction is

 on-
ph
Parameters of experimental systems studied to date satisfy
the inequalities” ,,>d>L and (keL)?>1. It follows that tyane—=qd/cq. (59
for w nearc,q the integrand of the frequency integral in the

drag resistivity expression is proportional tp 2~ (2q|q : . .
_ o . : The exponential factor in Eq(56) is exptyani /€ on)
_ 1 tran p
w/c) .;I'he Iogarlth.m.|c d."’?rg?“ce of the integral is cut which is the probability that a real phonon emitted from one
off at smallq by the validity limits in Eq.(55), and at large  |ayer reaches the other.
q by the exponential suppression factors or cutoff functions ~For the virtual-phonon contribution we find
which appear in Eq(55). For the real-phonon contribution
we find 302 o~ 2d3)
a6 Q°CppC [~ ~ exXp—2dq
f do|vgDyy(g,0)[*=—7— | | d4——=—7
. 0 F Ymin q
do|veDay(0, )|?

qc - q3C2DPCI Ei( 4 2_q>
ké N7l

9°CReci F?naxa"q' exp(—qd// )

ke Ja, q (60)
B q3C3pc Eil g [2q Ei qdL whereqy .= (@27 o) ¥2is also given by the validity limit in
T2 = /_ph B Conl )’ Eq. (55). The term in the exponent can be interpreted as the

probability that a virtual phonon emitted by one layer
reaches the other. The lifetime of the virtual state which is
given by the energy-time uncertainty relatiait~(g/c;
where —w) "1~q?c,q. The probability is expfty./At), where
~ T the transit time is given in Eq59). This gives the exponen-
Gmin= (/27 pn) ™ tial factor, and hence the distance dependence in(@8y.
~ 4 Only the sum of the two contributions will be observed in
Oma—L ™ (570 experiments. Adding the two terms yields

(56)

v
3¢,C2 dL\ g%cC2 In( ”“), Ld// <1
a7CCpp .(_q )~q I DP.. q ph 61)

fdw|voD21(q,w)|2~— 2 — |~ 5 gLd
0 kF /ph kF , ) /
/o €Xp(—qLdl/p/(gLd), qLd// g1
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Inserting Eq.(61) into Eq. (54), we obtain o )
J_ dw|voDyy(q, )|

h ) Ei( — 2keLd// pp)
A

P\ &2 nin,kgT 1 d?
expl —-—————

= 9% Im x1(9,¢,0)Im x2(,¢,0) 2, ¢t

o\ € sintf(7ic\q/2kgT) cfq’Cap foo y 2qL
~ e Y7ph

(62 Lkz Jo ot \?

hed | 2 _)

whereK, was defined in Eq(448, and againe=6 for \ <2qL

=| and =2 for A=t. The argument of the exponential (67)

integral was replaced by the typical valtig/2Lkgd since it
varies slowly over the large-angle scattering region Whidbh
dominates the integralkf=min[ke 1, ke »]). Equation(62)

This expression suggests a picture in real time for the
onon-mediated interaction. The integrand of the time inte-
_ 10 b 5 gral is recognized as a wave packet which is centered around
gives low-T power laws forp;; of T for A=1 andT® for  5ne well, and which broadens and decays as time evolves.
A=t. ] . When the wave packet is broad enough to reach the other
The distance dependence in the short phonon mean frege|| a transfer of momentuniparallel to the layejscan
path limit has now been made explicit; dss increased, the  gccyr. The distance dependence of the interaction is deter-
transresistivity falls logarithmically when,/2Lked=1,  mined by the time dependence of the intensity of the phonon
and exponentially wher',/2Lked=<1. The dependence of field disturbance at the other well. Sind&>L? there will be
the transresistivity upon temperature, electron density, anglg contributions to the integral in Eq67) until t=t*
the ratio of the electron densitieg /n, is given by the re- =qLd/c, which corresponds to the time it takes the wave
maining integral over the wave vector, which essentially eXpacket to reach the second well. Rort* the square of the
presses the phase space available for large angle scatteri@gnp"tude of the wave packet at the second Wi inte-
as we shall discuss in Sec. VI. grand in Eq(67)] falls off as 1t until it is eventually cut off
att=ry,. If 7,,<t*, then only the exponentially small tail
C. Real-space calculation of the phonon field impinges on the second well. Defining

In many physics problems, translational invariance andSEC't/qLd the time integral, Eq(67) can be written

time independence makes reciprocal-space calculations, like . C%p0|q3 s 1
the one presented in Sec. V B simple and convenient. It is J do|vyDyy(q,0)|?~ ——— | ds=
often the case, however, that the corresponding real-space” =~ ke 1S
calculations provide a useful alternate language for physical d 2
interpretation. In the present case the frequency integral in xexr{ —qL/—s) exp( - —2).
Eq. (54) is equivalent to an integral over time, ~ph S

(68)

fw dw|V0D21(q,w)|2:27fo dt|voDy(q,t)|2, (63  This integral cannot be evaluated analytically, butsasl
—o —o the term expf1/2s?) can be approximated by unity. The
resulting integral then yields E@61). Therefore, thed de-
pendence op,; can be interpreted as coming from the inter-
c play of the layer separation and the range of the phonons,
_G9Cpp [~ which mediate the drag.
voD2(q, )= 27kg f_wszFl(QZ)FZ(_QZ)D(Q’U' In the regime of short phonon mean free paths, the drag is
(64) mediated by damped phonons, some of which spread over
large distances in the direction. Hence in this regime the
and the real-time, retarded, phonon propagator is given by boundaries in thez direction will limit the effective /..
When boundary scattering dominates, a complete theory
D(Q,t)= —2®(t)sin(th)e’“ZTph, (65) would require a realistic description of phonons scattering
off the sample boundaries. This is in contrast to the limit
where 7,=/"/C; . Since the important values &, are /> .., where the drag is dominated by a coupled

where

small compared tg|, we can expand mode which is localized on the length scale &, and
boundaries beyond this range are irrelevant.
C
wo=CcVg*+Qs=ciq+ ﬁQ?- (66) VI. NUMERICAL RESULTS

. o o The results presented in this section were obtained by
Notice that the phonons have a quadratic dispersion ithe  merical evaluation of the transresistivity formylEq.

direction, but a Iinear_dispersion in the plane of the electrortlg)] using the complete expressions for both the effective
layers. TheQ, integration in Eq(64) can now be performed jnieraction[Eq. (14)] and the screening functidiEg. (21)].

if we model the de?szity profiles as Gaussians, so thajthoygh these numerical calculations are free of some of
F1(Q)F,(—Q,)=e Qe Q% e find that the approximations used in the preceding sections in order to
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FIG. 4. The transresistivity as a function of matched densities
1€ 3 : / ] for (@ /pp=1um and(b) /;p=1 mm. The temperatures afe
perature for(in increasing order/,,=10%, 1¢°, 1%, 10/, and  —1 2 3 and 4K for dash—triple-dotted, dash-dotted, dashed, and

10° nm. The parameters used are- 1.5x 101% cm?, L=200 A, solid lines, respectively. Other parameters as in Fig. 3. The ratio
andd=500 A in GaAs. The dots are data points obtained from Ref./ph//ph’Crit varies in(b) from 0.55 forn=0.5x 10"t cm™2 to 14.6

4, and the dotted line is given by E@3). Inset: Log-log plots for {5y n=25%x 10 cm 2.
the theoretical curves ;= 10* to 1%, showing the crossover from
T to T behavior. The dotted lines are for reference.

FIG. 3. The scaled transresistivip,/T? as a function of tem-

is approximately 50—100 times greater than that of the piezo-
_ ) electric phonons for the parameters used in the figure.
obtain transparent analytic results, we do not expect them to \ye also plot the results of E¢43) and the experimental
be exact. In particular, corrections to the random-phase ageasyits from Ref. 4. One can see that for the long mean free
proximation for scre_ening must _have some guantitative im'path approximation, and small layer separation, @8) un-
portance, and are difficult to estimate reliably. derestimates the contribution of the mode. An investigation
Except where noted, the layer density was chosen to havgf the integrand indicates that this is due to a rather long
the typical valuen,=1.5x 10" cm™? which yields a Fermi  non_orenzian tail in thes<c,q regime, which can be seen
temperature offr=zr/kg=60 K. The GaAs material pa- i the solid curve of Fig. 8 discussed below.
rameters are taken from the literature, and were given in Sec. Comparison of the magnitude of the experimental points
.. and the theoretical curves seems to indicate that effects of the
collective mode have been observed. However, as we caution
in Sec. VI D, this should not be construed as definitive proof

. . o of the existence of the mode.
As mentioned in Sec. | the transresistivity increases

roughly asT? at low temperatures if the effective interaction
between the layers is frequency independent. Deviations
from this behavior are indicative of retarded effective inter- From Egs.(43) and (62) the transresistivity at matched
actions. In particular, the phonon-mediated contribution tadensities is proportional to A7 times an integral whose
p»1 grows approximately a$° for the deformation poten- value primarily reflects the allowed phase-space volume for
tial, and asT® for the piezoelectric contribution. Both cross an exchange of phonons with large planar and small perpen-
over to a linear dependence @nat approximately their re- dicular momenta. The maximum planar momentum transfer
spective Bloch-Greisen temperatures. In Fig. 3, we plot q= 2k is proportional to the square root of the density. At
p21/T? as a function off. The shape of this curve is a result temperatures larger thaf .o, the phase-space integral

of an effective interaction which, for eaof), is sharply should therefore increase with density, reflecting the larger
peaked as a function of frequency aroune c,q. This peak possible momentum transfers. At temperatures well below
in the frequency integral, which produces the dominant conT ., on the other hand, phonons @ 2kg cannot be ex-
tribution to the phonon-mediated drag, is cut off exponenchanged, and a higher-density cannot be exploited. Conse-
tially by the thermal phase-space factor wharg>2kgT. quently, in the case where the density is changed at a fixed
This implies that only phonons with energies less than theemperature, the following behavior should be observed. For
temperature can participate in the drag. The crossover frofow densities, the increase in densitypermits larger mo-

T® or T® (where the piezoelectric coupling dominatés a  mentum transfers, thus increasing the transresistivity. At
linearT dependence gf,, (hence the peak in,,/T?) occurs  somen, a further increase does no good as the vave
when the X phonons, which are responsible for most of thevectors cannot be excited, and this leads to an overall de-
momentum transfer in the systems, can be excited. The peakease inp,;. The resulting curve fop,, has a bump or

is expected to occur near the temperature schlgg ~ maximum as a function of the density. The position of the
=#h2cke/kg, which is 7.8 K for the parameters used in Fig. bump or maximum increases with increasing temperature,
3. It in fact occurs at aroun@ pea=2.5 K~Tge/3. For T for the reasons stated above. Figure 4 shows the density de-
= Tgg the contribution of the deformation-potential phononspendence of the transresistivity for four different tempera-

A. Temperature dependence

B. Density dependence
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FIG. 6. The transresistivity as a function of the mean free path,
for d=50, 3000, and % 10* nm (solid, dotted, and dashed lines,
respectively. The density is 1.5%10'! cm 2, andT=3 K. Inset:
Real-phonon, virtual-phonon, and coupled-mode contributidos
ted, dashed, and solid lines, respectiydiyr transresistivity as a

tures,T=1, 2, 3, and 4 K and”phzl wm (short mean free function of mean free path, fa=50 nm andT=3 K.

pat\?vr:_elglrtr;?z and 1 mlrr}(coupled;jmode-d%mlrgated regime el transresistivity. In Fig. 6, we plot numerical results
both r:a(;im:s gl(iir;:]erz steil?tsur:g\?vs Iscsjsliati?/eogi?fear:een ;Sebr; {Br the transresistivity as a function of the mean free path for
tween the two. The reason is twofold. A comparison of Eqsﬁr-:3 K andd=50 nm. For/p=/"pheit, We are in the re-

43) and (62 ' Is that there i ' ira fact s gime where the electron-phonon interaction is separately
(43) and(62) reveals that there is an extra factor off jin screened in the two layers, apd; increases logarithmically

the in_tegrand of Eq(62). Sinc_e I.nﬁX] de_creases _Wit_h in- with 7/, We see in Fig. 6, when the mean free path exceeds
creasingke, p,, falls faster with increasing density in the /pherit @nd the collective mode starts to emerge, that the
short mean free path regime than in the coupled-mode ez, g esistivity increases more rapidly before saturating at a

gime. More importantly,/ , ot IS strongly dependent on value ai : : i
L o ) - given roughly by the estimate given in E¢3). By
density:/ o cri (2Ke + 0 re) 7/Kg . Hence increasing the den- splitting the contributions into reale(>c,q), virtual (c,q

sity can make the coupled mode more and more dominaan>w0) and coupled modesw~ wy), we show in the

and lead to an increase p$;. As seen in Fig. 4, the differ- ,5at of Fig. 6 that the increase i, which occurs wher

ence in density dependence could provide a clue regarding,ceeqs . comes mainly from the coupled-mode contri-
which of the two regimes prevails in a particular sample. P

FIG. 5. The scaled transresistivitg, T~ n, /n, as a function of
the density ratim, /n, for (in increasing orderT=1, 2, 3, 4, 5, and
6 K, n,=1.5x10" cm™2, d=50 nm, (&) /pn=1 um, and(b) /',
=10 cm. Other parameters are as in Fig. 4.

bution.

In the low-temperature regime where the drag experi-
ments were performed;, is certainly sample dependent,

The transresistivity is strongly dependent on the electronbut should be temperature independent for a given sample.
density ration, /n,. For temperatures well below the Fermi Extrapolating the logarithmie”y, dependencdi.e., which
temperature, the maximum planar momentum transfer is neglects effects of collective screenijrig Fig. 6 for thed
= 2K min,» Whereke min is the Fermi wave vector of the elec- =50 nm case, we find that the value ©6f, required to fit
tron gas with the lowest density. Decreasing one density wilmeasured valuésof p,; (=12 mQ) are (literally) astro-
lead to a decrease jm,; a decrease also occurs if one den-nomical in magnitude. This could be taken as evidence of the
sity is increased because of the generalij dependence. importance of cooperative screening and collective modes in
The resulting peak at equal densities, illustrated in Fig. 5, ipresent experimental systems. On the other hand, our nu-
independent of temperature and does not occur for the Courerical calculations are dependent on random-phase-
lombic drag mechanisnfin the absence of any plasmon approximation estimates of Iy which are likely to require
effectd*19. This difference was usédo separate Coulomb substantial numerical revisidhespecially in the important
and phonon drag mechanisms experimentally when the layeéegion nearq=2kg. These corrections will increase I
separation is sufficiently small that the Coulomb mechanisnand could possibly boost the theoretically calculapgg to
is of comparable importance. experimental values without invoking the coupled electron-

The calculations were done for both short and long meaphonon mode. The random-phase approximation for the
free path regimes. However, the shape of the curves are sgreening function can also lead to a quantitative discrep-
much alike that it is unlikely that a density-ratio measure-ancy. Hence we do not claim that there is incontrovertible
ment can be used to differentiate these two regimes in aaxperimental evidence for the existence of the coupled

C. Density-ratio dependence

experiment. electron-phonon mode.
D. Mean free path dependence E. Layer separation dependence
In Sec. VI C we explained that there is a critiegl, be- It is possible to prepare a series of double-quantum-well

yond which a collective mode appears which enhances thgystems which are substantially identical apart from the
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function of frequency afj=2kg, indicates that there is a
substantial non-Lorenzian tail fas<<c,q— wq, which is not
taken into account in the analysis leading to E&B). This
tail contributes to the nearly logarithmitdependence in the
regime where the collective mode contributes significantly.
Another surprising result is that, in this regims,; does
not decrease monotonically dgs increased. Instead there is
a peak wherd~/, oi/Ke. Beyond this layer separation,
the electron-phonon collective mode of the double quantum
well begins to decouple into two weakly coupled modes cen-
tered around each well. This is illustrated in Fig. 8, where we
compare the frequency integrands b« \/ p, i/ Ke andd
>/ pharitl Ke. As d is increased further beyon&phycrit/ Ke,

the transresistivity eventually resumes its decline.

1 5 T T T

10r

Pz (mQ)

VIl. SUMMARY AND CONCLUSIONS

FIG 7. Th_e transresistivity as a function of the well separation  pnonon exchange contributes importantly to the frictional
for (in increasing Orderlfphleoa’ 10, 10, 10, 10/, and 16 nm, a4 resistance between nearby electron layers, and is the
atT=3K, n=1.5x<10"" cm? andL=200 A. dominant drag mechanism at large two-dimensional layer

separations. In this paper we reported on a thorough theoret-
separation between the 2D electron layEtSExperiments ical analysis of this drag mechanism. We find that drag in-
on such a series of samples will give a more certain indicaeludes contributions due to exchange of both virtual and real
tion of the operative phonon exchange regime than experiphonons, and that coupled collective modes of the 2D elec-
ments on a single sample. tron and 3D phonon systems can play a role depending on

In Fig. 7 we plot the transresistivity as a function of the sample geometry and material parameters. We distinguish
separation between the wells, for various phonon mean fregvo regimes based on the relationship between the phonon
paths. For”';, small enough that the collective mode has notmean free path and a crossover length seajg.; which is
developedp,; exhibits a purely logarithmic dependence ontypically of the order of 0.2 mm. It is possible that the mean
d, until d exceeds”,n/(2keL), when it begins to fall expo-  free path for high quality molecular-beam epitaxy grown het-
nentially. For/ 1=/ phcrit» the behavior is more complex. erostructures can exceeg, . at low temperatures.

The collective mode develops, ampd, is considerably en- In the short mean free path regime the dominant drag
hanced. For smalll, our numerical results suggest that;,  processes at momentum transéehave an energy transfer
also decreases logarithmically with in contradiction with  just belowc,q for virtual phonons, and just abowgq for

the d independence implied in Eq43). Figure 8, which real phonons. The drag rate in this case decreases logarith-
shows the integrand of the transresistivity expression as mically with layer separationd, until d reachesd,

=/ p/2keL~/",n. The weak layer separation dependence
comes nearly entirely from the virtual-phonon exchange con-
tribution. Ford>d,, the virtual-phonon exchange contribu-

1200 tion is small and the real-phonon exchange contribution de-

1000 creases exponentially with layer separation. The real-phonon
F exchange contribution to the drag is consistent with expecta-
N 800 tions based on the coupled Boltzmann equations for the elec-
% tron and phonon systems, and the exponential falloffdfor
g 600 >d, can be understood in terms of the decay length for the
o disturbance of the steady-state phonon system as the result of
ﬂé 400r current flowing in one of the electron layers.
= For samples with phonon mean free paths larger than

200 / oheritr @ collective mode involving both electronic and lat-
0 L - tice degrees of freedom emerges below the continuum of 3D

phonon energies with 2D wave vectogsnear Xr. The
existence of this mode enhances the drag. In this regime the
drag also has a roughly logarithmic layer separation, whtil

FIG. 8. The integrand as a function af for g=2kg and 7y, reaches another_ crossover IengtUB=(1+qT_,-12k,:)/
—o, for d=50 nm (solid), d=3x10° nm (dashed and d 16k,:CDE,. For typlcal_ samplesdB~0.5,um_. At this layer
=5%10* nm (dotted. Other parameters are as in Fig. 7. As the Separation the collective mode separates into weakly coupled
well separation increases, and the electron-phonon mode decouplB¥odes associated with the individual 2D layers. Although
into two weakly coupled individual modes, leading to the twin- the (_jrag'has a Comphcated t_'ﬂmd nonmonotonic |'°_1yer separa-
peaked structure at=3x 10° nm. At large well separations, the tion in this regime, it does ultimately decline with increasing
collective modes do not contribute to the transresistivity, and thél. These findings are summarized in Table I.
entire momentum transfer is due to the real phonons. There are, unfortunately, few existing experiments on the

—-6x1078

w/qu; - 1
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TABLE I. Table summarizing the distance behavior for the

collective-mode regime and for the damped-phonon cases. wheredN is the nonequilibrium distribution of phonons, and
, , , NO(Q)=[exp@lekBT)—1]‘1. The coupling constant
/o 7 on </ phit 7 or  pncrit 01(Q) is given by
Physics Damped phonons Couplegh mode
d d<d d>d d<d d>d
: 2 ° ° 1(Q)=IM(Q)|*F1(QyI?. (Ad)
Distance d, Weak Complicated
dependenceln(da/d) 5 &= d/da) | jogarithmig
Since the phonon coupling constant is small, we ignore the

d(Q) term in Eq.(A2) because it is higher order .
long distance dependence of the phonon-mediated drag resis- Then, one can write the phonon generation tateng the

tivity. More experimental work will be needed to understand.
the range of possible behaviors and their dependence on syIdentlty fo(e)[1~To(e+ @)]=[To(€) = Folet ) J[No(w)
tem parameters. We note, however, that the preliminary ex-

perimental results by Gramilat al3® are consistent with a

logarithmi .
garithmicd dependence NQ)| B El ~ N
it = LI9QINo(QIL+Ng(Q)]
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APPENDIX: BOLTZMANN EQUATION DERIVATION ®(Q,2) U7
OF THE PHONON DRAG Uz = _5(2)2|9(Q)|2n: k T —Im x(q,00)]
A sketch of the derivation of the contribution due to real
emission of phonons is given here. This Boltzmann equation
approach has been used previously to estimate the real pho- ®(Q,2)
non contribution to the drat>® T (AB)

Assume that the distribution function of the driving layer
is a drifted Fermi Dirac. Then the deviation functigf(k) whose solution is
=0t (K)/[(1—To;(K))fo;(k)] (where fy; is the equilib-
rium distribution function in layer) for a driving field eE;

in the x direction is 2|01(Q)|%a,reE;
$(Q,2)=— Im ,
(Q ) m* kBTlvz(Q)| Xl(q wQ)

) 0(zQ,). (A7)

eE —Z
Yi(K)= %w(k). (A1) Xex‘]( T 0AQ 7

The generation of nonequilibrium phonons is given by the 1 n€ €lectron-phonon collision term in layer 2 is

electron-phonon coupling, and is
&f) 2

2
(c?N(Q)) 2w 2 (52 " v 2 |9 Q= 81— et o)

) =R v 2 191QIP (e et heg))
gen

X[1+No(Q) P (- Q)+ (et q—ex—hwg)
Xfo1(K)[1—"fo2(k+0d)INo(Q)

XNo(QP(Q)}. (A8)
X[ (k) = g (k+q) + P(Q)], (A2)

Using ®(—Q)=—®(Q), the total momentum transfer to
D (Q)=N(Q)/{No(Q[1+Nog(Q)1}, (A3)  the second layer is
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( ) f dq qq,reE; F dQ, 2/91(Q)|4g2(Q)|? exr —d/v,(Q) Tyhl
(2m)? 0

mkeT Jo 27 Q) Asinf(hwg2kgT) "M XUB@)IM X2(d o). (A9)

Given thatwg=cQ, the transresistivity can be expressed in the following form:

By —(dpy/dtym* -1 J 7
le_‘J_l_ ezn1n2E17 B 8772e nlnszT q
r Im x1(9,@)IM x5(q,0) w?|Fi(V(w/c)*—g*)|?|F,(V(w/c)*—a%)*IM(q,V(w/c)*—g*)|*
X | dw 5
sintf (A w/2kgT) cilw?—(qc)?]
X d (A10)
exp — .
C| Tph\ll_C| q2/w2
|
In comparison, the expression for the “real” contribution a,= +[e+il(2¢,71) 17— >
to the transresistivity is (AL13)
—#? © + Jol PP w
- ® ~*Jolci— gt ————=.
P2r™ g 2e?n n kT fo dq ¢° ! 27ctw?lci—q?
% , 1M x1(0,@)Im x5(q, ) As they lie close to the real axis, the Lorenzians can in gen-
x fo dw[ Dy real Snf(hol2kgT) eral be approximated by(w+c;\/g?+q2). The imaginary

part of the pole, however, does affect the exjg,d) term

(All)  which comes from the difference in the phases of the form
factorsF,(Q,) andF,(—Q,). The Q, integration results in
the insertion of the imaginary part of the pole into the expo-
nent, yielding

where

) zFl(Qz)F2( - Qz)

) dq
D21,rea(qvw) = fﬁx 2772

-1
1M D(Q.w) Do reaf 6, @) ~ ——|M(q,V0?/cf — q7) |?F 1 (Vw?/ci — 6?)
Y (A12)

Im D(Q,®) al X Fo( Vo2l 2= )
m ,W)= 2 [ N T

(0+ Va2 2)2+ (1/27,)2 eV Z/CF q°

1/2 d
Tph ><exp( - ——|.  (A19)
| (w—ca?+ad)2+ (12r,)2) 2¢ V1= ¢ 9% w

For small 1f,, the poles of the Lorenzian are Substituting Eq(A14) into Eq. (A11) gives Eq.(A10).
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