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We use the Kubo formalism to evaluate the contribution of acoustic-phonon exchange to the frictional drag
between nearby two-dimensional electron systems. In the case of free phonons, we find a divergent drag rate
(tD

21). However,tD
21 becomes finite when phonon scattering from either lattice imperfections or electronic

excitations is accounted for. In the case of GaAs quantum wells, we find that for a phonon mean free pathl ph

smaller than a critical value, imperfection scattering dominates and the drag rate varies as ln(l ph/d) over many
orders of magnitude of the layer separationd. Whenl ph exceeds the critical value, the drag rate is dominated
by coupling through an electron-phonon collective mode localized in the vicinity of the electron layers. We
argue that the coupled electron-phonon mode may be observable for realistic parameters. Our theory is in good
agreement with experimental results for the temperature, density, andd dependence of the drag rate.
@S0163-1829~98!03612-1#

I. INTRODUCTION

Interactions between particles are a cornerstone of much
of today’s research in physics. In nuclear and high-energy
physics, the effects of these interactions can be probed di-
rectly through scattering experiments. In condensed-matter
physics, interparticle interaction effects are enriched by the
close proximity of other particles giving rise to a plethora of
fascinating phenomena. However, direct measurement of
these interactions in a condensed-matter system is often a
more difficult exercise, because of the indirect way in which
scattering amplitudes are related to observables.

Some time ago, Pogrebinskii and later Price1 proposed the
following direct probe of interparticle interactions through a
transport measurement. Place two two-dimensional~2D!
electron films close enough together and draw a current in
one film. Through interlayer interactions, net momentum is
transferred to electrons in the adjacent film, inducing a cur-
rent there which can be measured. Due to technological dif-
ficulties in contacting the individual layers, decades passed
before the first frictional drag experiment between 2D and
three-dimensional~3D! layers was performed.2 The first ex-
periments on this phenomenon between two 2D systems, as
originally envisaged in Ref. 1, were performed by Gramila
et al. for two electron layers,3,4 and by Sivan, Solomon, and
Shtrikman for an electron–hole system.5 In these experi-
ments a current is drawn in the first layer, while the second
layer is an open circuit. Instead of a current in the second
layer, there will be an induced electric field that opposes the
‘‘dragging force’’ from the first layer. Thetransresistivity
rJ21 is defined as the ratio of the induced electric field in the

second layer to the driving current density in the first,

rJ21•J15E2 . ~1!

The stronger the interlayer interaction, the larger the magni-
tude of the transresistivity.~In this paper, we shall treat iso-
tropic systems at zero magnetic field, hencerJ21 is diagonal!.
The transresistivity is often interpreted in terms of a drag rate
which, in analogy with a Drude model, is defined bytD

21

5r21n1e2/m* , wheren1 is the electron density of the driv-
ing layer andm* is the electron effective mass.

These experiments spurred a large body of theoretical
work both on electron-hole systems6 and on electron-electron
systems.7–17 Most of this work focused on interlayer Cou-
lomb interaction, the most obvious coupling mechanism and
the one considered in the original theoretical papers.1 How-
ever, it was clear from the start that the experimental results
were inconsistent with a purely Coulomb interlayer interac-
tion, which predicted a low-temperature3,11,12

~kBT!«F,1 ,«F,2 , where«F,i is the Fermi energy for layeri !
transresistivity of the form

r215S 2
h

e2D z~3!p

32

~kBT!2

«F,1«F,2

1

~kF,1d!~kF,2d!

1

~qTFd!~qTFd!
,

~2!

where z is the Riemann zeta function,d is the interlayer
separation,kF,i is the Fermi wave vector for layeri , andqTF
is the Thomas-Fermi screening wave vector of the 2D elec-
tron gas. This expression is based on the random-phase ap-
proximation~RPA! for the screened interlayer Coulomb in-
teraction and applies forqTFd@1 andkF,id@1.
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From inspection of Eq.~2!, one notes three important
characteristics of the Coulomb drag for low temperatures:~1!
the scaled transresistivityr21(T)/T2 is a constant;~2! r21 is a
monotonically decreasing function of the density of either
layer ~so long askF,id@1!; and ~3! r21}d24. The experi-
mental results at around 2–3 K, on the other hand,
showed3,4,18 ~1! a well-defined peak in ther21(T)/T2, ~2! a
local maximum inr21 near equal layer densities and~3! an
approximatelyd-independent residualr21, after subtraction
of the Coulomb contribution which can be identified experi-
mentally by its simpled and T dependencies. Furthermore,
the experimentally measured magnitude ofr21 was generally
larger by about a factor of 2 than the value predicted by the
Coulomb interaction alone. Another momentum-transfer
mechanism was clearly involved.

From the outset it was understood that exchange of acous-
tic phonons was the most likely candidate for this second
momentum-transfer mechanism. Exchange of phonons often
dominates electron-electron scattering contributions to the
resistance of bulk metals.19 The peak in the temperature de-
pendence ofr21(T)/T2 is reminiscent of features in the tem-
perature dependence of the acoustic-phonon-limited mobil-
ity, and occurs around the Bloch-Gru¨neisen temperature
TBG52kB

21\clkF associated with the acoustic-phonon
modes.~cl is the longitudinal acoustic-phonon velocity.! The
phase space available for scattering is largest for 2kF trans-
fers, partially explaining the enhanced drag whenkF,1
5kF,2 . Finally, the long-ranged exchange of phonons be-
tween electrically isolated systems is not an unknown phe-
nomenon. Exchange of phonons between two 3D systems
separated by;100 mm was observed previously,20 and re-
lated effects are expected to be observable in a superlattice if
the driving electron layer is hot.21 The theoretical challenge
is to explain the magnitude of the observed drag and its
dependence on layer separation and density.

Since interactions of acoustic phonons with electrons are
relatively weak in GaAs, the fact that phonon-mediated and
Coulomb contribution to the drag are often comparable
seems mysterious. However, we show below that the obvi-
ous calculation, in which a free-phonon propagator substi-
tutes for the Coulomb interaction, leads to a divergent drag
resistivity. The large but finite drag rates which are observed
experimentally can be explained in terms of scattering and
interaction effects which alter the phonon propagator.

Despite the apparent importance of phonon exchange in
drag measurements, there has been less theoretical work on
this mechanism than on the Coulomb coupling mechanism.
An incoherent phonon exchange model studied by Gramila
et al. produced a drag rate which was too weak to account
for the observed transresistivity.4 Tso, Vasilopoulos, and
Peeters9 addressed the question of whether exchange ofvir-
tual phonons could make a contribution strong enough to
explain the magnitude of the transresistivity, but did not use
an electron-phonon coupling model which is realistic for
GaAs/AlxGa1-xAs systems. Zhang and Takahashi10 included
all relevant phonon contributions; however, due to an incor-
rect effective two-dimensional electron-phonon interaction,
they predicted a short-range phonon-mediated drag. In spite
of the use of radically different models for the phonon-
mediated process, both these calculations yielded a tempera-
ture dependence for the drag in reasonable agreement with

experiment. The similarity is not surprising because of the
common appearance of the Bloch-Gru¨neisen temperature
scale associated with the acoustic-phonon mode. Comparable
features in the drag, associated with plasmon modes of the
electronic system, were predicted14,16 and observed22,23 at
higher temperatures.

In this paper we report on a detailed examination of the
phonon exchange mechanism for drag, using a model which
we believe to be quantitatively reliable for GaAs/AlAs
quantum-well systems. We address the distance, tempera-
ture, and density dependence of the transresistivity. We show
that two different regimes of layer separation dependence
can occur, depending on the phonon mean free path and the
electron-phonon coupling constant. We demonstrate the ex-
istence of a coupled electron-phonon mode, which for long
phonon mean free paths leads to a large enhancement of the
drag.

The outline of the paper is as follows. In Sec. II we use a
Kubo linear-response formalism to obtain a formula for the
transresistivity which is sufficiently general to permit the in-
corporation of a finite phonon mean free path and renormal-
ization of the phonon propagator due to coupling to the elec-
tronic layers. In Sec. III we discuss the phonon-mediatede-e
interaction, and explain how the relatively weak electron-
phonon interaction can lead to a surprisingly large contribu-
tion to the drag. The two different regimes ofl ph are dis-
cussed in Secs. IV and V, where approximate expressions for
r21 are derived, and special attention is paid to the layer
separation dependence of the drag. Detailed numerical re-
sults are presented in Sec. VI before we conclude in Sec. VII
with a summary of results.

II. FORMALISM

Identical theoretical expressions for the drag rate due to
Coulomb interactions were obtained in several different
ways. The most physically transparent derivation was based
on semiclassical transport theory.11 More elaborate fully
quantum mechanical-derivations based on memory
function12 or Kubo formula approaches13,15 yield identical
results for the largekFl limit at zero magnetic field but are
more flexible and, in particular, can be applied in the pres-
ence of an external magnetic field.~Here l is the electronic
mean free path.! We show below that at lowest nonvanishing
order in the electron-phonon interaction, phonon exchange
yields an infinite result for the drag rate. The Kubo formula
approach, which we use in this paper, is most convenient
when interlayer interactions need to be treated beyond lead-
ing order, because of the powerful diagrammatic perturba-
tion theory expansion available to evaluate the influence of
interaction terms on the appropriate current-current correla-
tion function. The required calculation is an adaptation of
those described in Refs. 13 and 15, and is outlined below.

A. Electron-phonon interaction Hamiltonian

We consider frictional drag between two GaAs quantum
wells. We define the plane of the quantum wells as thex-y
plane. The distance between the centers of the two quantum
wells is d, and the width of the two wells isL. We assume
that the electron number densities in each well,n1 and n2 ,
are such that only one subband of the quantum well is occu-

7086 57BO” NSAGER, FLENSBERG, HU, AND MacDONALD



pied. The formalism can easily be generalized to accommo-
date more occupied subbands.

We include interlayer and intralayer Coulombic electron-
electron interactions and the coupling of electrons in either
layer to the 3D phonons of the semiconductor host.24 We
denote 3D wave vectors by upper case letters, and their pro-
jection onto thex-y plane by the corresponding lower case
letter so thatQ5(q,Qz). The electron creation~annihilation!
operator in layeri is ĉi

†(k) @ ĉi(k)# with implicit spin indices,
the phonon creation~annihilation! operator for polarizationl
is âl,Q

† (âl,Q), and the subband wave function of electrons in
well i is w i(z). With these definitions, the electron-phonon
interaction contribution to the Hamiltonian is given by

Ĥe2ph5V21/2(
l

(
i 51,2

(
q,Qz

Ml~q,Qz!Âl,q,Qz
r̂ i~2q!

3Fi~Qz!, ~3!

whereV is the normalization volume,

Fi~Qz!5E
2`

`

dzuw i~z!u2e2 iQzz,

~4!

Âl,Q5âl,Q1âl,2Q
† ,

r i~q!5(
k

ĉi
†~k!ĉi~k1q!, ~5!

and Ml(Q) is the bulk electron-phonon coupling constant.
At temperatures much lower than the Debye temperature,
one can neglect the Umklapp process in the electron-phonon
interaction Hamiltonian.

B. Kubo formula transconductivity

The Kubo formula for linear response offers an expres-
sion for the transconductivitytensor which is defined by

J25sJ21E1 . ~6!

In the absence of magnetic fields,J2 andE1 will be antipar-
allel, andsJ21 is a diagonal 232 tensor.

The derivation sketched below fors21 is very similar to
the one given previously in Ref. 15, in which the reader can
find further details. The transconductivity is given by

s21
ag~k,V!5

ie2

\V
P21

ag,ret~k,V!, ~7!

whereP21
ag,ret(k,V) is the Fourier transform of the retarded

current-current correlation function, anda and g are Carte-
sian indices. The retarded correlation function is evaluated
by the standard analytic continuation of the~bosonic Mat-
subara frequency! Fourier components of its imaginary time
counterpart.15 The imaginary time correlation function is cal-
culated in perturbation theory

P21
ag~x2x8,t2t8!52

^Tt$S~b! j 2
a~x,t! j 1

g~x8,t8!%&0

^S~b!&0
,

~8a!

S~b!5TtH expF2
1

\ E
0

\b

dt H int~t!G J , ~8b!

where^¯&0 denotes a noninteracting system thermal aver-
age, andTt$¯% is the usualt-ordering operator. TheS ma-
trix is expanded in powers of the interaction Hamiltonian,
and the resulting noninteracting system correlation functions
are evaluated with the aid of Wick’s theorem. As usual, the
denominator in this expression cancels the ‘‘disconnected’’
terms in the diagrammatic expansion.

If we include only electron-phonon interactions for the
moment, the lowest nonvanishing term appears at fourth or-
der, and makes the following contribution to the current-
current correlation function:

P21
ab~k50,iVn!~4!52

V22A21\24

4 E
0

b

dtE
0

b

dt1E
0

b

dt2E
0

b

dt3E
0

b

dt4 exp~ iVnt! (
Q1 ,l1

(
Q2 ,l2

(
Q3 ,l3

(
Q4 ,l4

Ml1
~Q1!

3Ml2
~Q2!Ml3

~Q3!Ml4
~Q4!^Tt ĵ 1

a~q50,t!r̂1~2q1 ,t1!r̂1~2q2 ,t2!&0

3^Tt ĵ 1
b~q50,0!r̂2~2q3 ,t3!r̂2~2q4 ,t4!&0F1~Qz,1!F1~Qz,2!F2~Qz,3!F2~Qz,4!

3^TtÂQ1 ,l1
~t1!ÂQ2 ,l2

~t2!ÂQ3 ,l3
~t3!ÂQ4 ,l4

~t4!&0 , ~9!
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whereA is the 2D system area.
The Wick’s theorem factorization of the phonon operator

product expectation value leads to the product of two bare
phonon Green’s functions, defined by

Dl
~0!~Q,t2t8!52^Tt$Âl,Q~t!Âl,2Q~t8!%&0 . ~10!

It follows that, to leading order in electron-phonon interac-
tions,

P21
ag~k50,iV!5

21

2A\2 (
q

1

\b (
iv

D2
a~2q,2q,2 iv

2 iV,2 iv!D1
g~q,q,iv1 iV,iv!

3E dQz

2p\ (
l

F1~Qz!F2~2Qz!

3uMl~q,Qz!u2Dl
~0!~q,Qz ,iv!E dQz8

2p\

3(
l8

F1~Qz8!F2~2Qz8!uMl8~q,Qz8!u2

3Dl8
~0!

~q,Qz8 ,iV1 iv!, ~11!

where

D~q,q; ivn ,ivn8![2A21E
0

b

dt1E
0

b

dt2^Tt ĵ ~q50,0!

3 r̂~q,t1!r̂~2q,2t2!&exp~ ivnt1!

3exp~ ivn8t2!. ~12!

The Feynman diagram corresponding to this contribution to
the correlation function~11! is shown in Fig. 1.

It will turn out to be important to account for disorder and
anharmonicity in the lattice system. We will do so using a
phenomenological approach by introducing a phonon mean
free path l ph. However, since the intrinsic bulk phonon
mean free path may exceed the dimensions of the sample, we
should in principle take the surface scattering explicitly into
account. For simplicity we will nevertheless use a single
phenomenological mean free path and later, when we discuss
the long mean free path limit in more detail, take boundary
effects into account. The phonon Green’s function is then25

Dl~Q,ivn!52
2vl,Q

@vn1~cl/2l ph!sgn~vn!#21vl,Q
2 ,

~13!

wherevl,Q5clAq21Qz
2, andl ph is the phonon mean free

path.
Note that the wave-vector arguments inDi are 2D, since

Di is a property of the 2D electron systems. One can there-
fore sum overl and integrate overQz to obtain a phonon-
mediated effective interaction

Di j ~q,ivn!5E dQz

2p\ (
l

uMl~Q!u2Fi~Qz!F j~2Qz!

3Dl~Q,ivn!. ~14!

This effective interaction is the 2D Fourier transform of the
product of the phonon propagator between the layers and the
electron-phonon interaction in each layer. With this defini-
tion, Eq. ~1! becomes

P21
ag~k50,iV!5

21

2A\2 (
q

1

\b

3(
iv

D2
a~2q,2q;2 iv2 iV,2 iv!

3D1
g~q,q; iv1 iV,iv!D21~q,ivn!

3D21~q,iVn1 ivn!. ~15!

This expression forP21 is the same as in Ref. 15, except that
the interlayer Coulomb interaction is replaced by the
phonon-mediated effective interaction. From this point on,
the formal steps are identical to the Coulomb case. Perform-
ing the summation overiv, continuing to real frequencies
and taking theV→0 limit, we obtain15

s21
ag5

e2

2\3A (
q
E

2`

` dv

2p
uD21~q,v1 id!u2F2

]nB~v!

]v G
3D2

g~2q,2q,2v2 id,2v1 id!

3D1
a~q,q,v1 id,v2 id!. ~16!

C. From transconductivity to transresistivity

For further progress it is necessary to make some assump-
tions about the electronic systems. We will assume that the
2D electron layers are good metals with largekFl , wherel
is the electronic mean free path. It can then be shown13,15,16

FIG. 1. The Feynmann diagram corresponding to the correlation
function ~11!. The triangles~the functionD! in each layer are con-
nected by phonon propagators~wiggly lines!. The dots represent the
e-ph coupling, and the dashed lines are external current operators.
The frequencies and two-dimensional wave vectorsq are conserved
in each vertex, whereas the perpendicular componentsQz and Qz8
are independently integrated over.
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that whenever the transport scattering timet tr is independent
of energy, the functionD is related to the electron polariza-
tion functionx~q,v! by

D i
a5

2t tr,i

m*
qa Im x i~q,v!. ~17!

Here m* is the electron effective mass. Relation~17! is a
property of the 2D electron layers only, and is not dependent
on the phonon degrees of freedom. Assuming further that
us12u!s i i , the transresistivity can be approximated as fol-
lows:

r215
2s21

s11s222s12s21
'

2s21

s11s22
. ~18!

Using the Drude expression (s i i 5e2nit tri
/m* ) for the intra-

layer conductivities, which is valid under the above assump-
tions, the transresistivity due to the electron-phonon interac-
tion is given by the following explicit expression;

r215
2\2

4e2n1n2kBT

1

A (
q

q2

3E
2`

` dv

2p
uD21~q,v!u2

Im x1~q,v!Im x2~q,v!

sinh2~\v/2kBT!
.

~19!

The same expression for the phonon-exchange contribu-
tion to the drag can also be derived using semiclassical
Boltzmann transport theory and a collision term with transi-
tion matrix elements calculated by summing over virtual and
real intermediate states with absorbed and emitted phonons.
Ambiguities can arise in that approach, however, from the
portion of phase space where the relevant energy denomina-
tors approach zero. As we explain below this part of the
phase spaceis important in determining the drag resistivity.
Our Kubo function derivation allows finite phonon mean free
paths, which remove any spurious singularities, to be incor-
porated into the calculation in a consistent and unambiguous
manner.

Note that the explicit dependence of the transconductivity
on the transport lifetime is absent in the transresistivity.~An
implicit dependence remains through the dependence of the
polarization function on disorder.! This aspect of the final
expression, emphasized in recent work by Swierkowski, Szy-
mański and Gortel,17 is not accidental, and emerges naturally
in a force-balance approximation where the drag force sim-
ply cancels the rate of momentum transfer per particle from
the current carrying layer to the open layer.

D. Coulomb interaction and screening

In reality, electron-electron and electron-phonon interac-
tions are simultaneously present, and both should be in-
cluded in a drag calculation. To leading order, Coulomb in-
teractions can be incorporated by simply adding26 the
interlayer Coulomb interaction to the phonon-mediated ef-
fective interaction in Eq.~19!. One class of higher-order
terms in which intralayer Coulomb interactions appear is
captured by replacing the electronic polarization functions
which appear in Eq.~19! by their interacting system coun-

terparts. However, the most essential higher-order terms are
those which account for the screening of both phonon-
mediated and Coulombic interactions. In the RPA, the total
interlayer screened interaction is given by

W21
total~q,v!5

D21~q,v!1U21~q!

e~q,v!
, ~20!

whereUi j (q) is the unscreened Coulomb interaction, and

e~q,v!5@12~D111U11!x1#@12~D221U22!x2#

2~D211U21!
2x1x2 . ~21!

~See, for example, Ref. 10. The form of the phonon-mediated
interlayer interaction in this reference is incorrect, however.!
e(q,v) is the effective dielectric function for interlayer in-
teractions in the RPA. Notice that when the contribution of
interlayer interactions to the screening can be neglected,e is
simply the product of the dielectric functions for the two
layers, corresponding to independently screened electron-
phonon interactions in each layer.

Coulomb and phonon-mediated interactions can be simul-
taneously included in the transresistivity simply by replacing
D by Wtotal in Eq. ~19!. Note that the transresistivity is not
strictly the sum of purely ‘‘Coulomb’’ and ‘‘phonon’’ con-
tributions, since there are interference terms proportional to
U3D in the uW21

totalu2. However, the Coulomb contribution is
large only forq&0.5kF @U(q)52pe2 exp(2qd)/q when the
finite thickness of the electron layers is neglected#, whereas
contributions from theD term come predominantly fromq
'2kF . Hence the interference terms are usually negligible,
and in practice we will treat the Coulomb and phonon con-
tributions as if they were incoherent. In what follows, we
will concentrate on the ‘‘phonon contribution,’’ which will
be calculated from Eq.~19!, with only theD term in the
numerator,

W21~q,v!5
D21

e
. ~22!

Note that it is important to retain the coupling between the
Coulomb and phonon terms ine, since this can influence the
q'2kF contribution to the transresistivity.

III. PHONON-MEDIATED INTERACTION
IN GaAs/AlXGa12XAs SYSTEMS

As mentioned earlier, the acoustic-phonon–electron inter-
action is weak in GaAs and AlxGa12xAs. In this section we
discuss quantitatively what ‘‘weak’’ means, and explain how
phonons can make an important contribution despite this
weakness. In Sec. IV we discuss how and when screening
affects the phonon-mediated interaction.

A. Electron-phonon coupling in GaAs/AlxGa12xAs

In GaAs/AlxGa12xAs systems, electrons couple to acous-
tic phonons via deformation potential and piezoelectric cou-
plings. Since we are concerned with low-energy excitations,
only acoustic phonons in the long-wavelength limit have to
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be considered. In this limit, the squares of thee-ph coupling
strengths for longitudinal and transverse phonons are,27 re-
spectively,

uMl~Q!u25
\Q

2%cl
FD21

~eh14!
2

Q2 Al~Q!G , ~23!

uMt~Q!u25
\~eh14!

2

2%ctQ
At~Q!, ~24!

where% is the mass density of the crystal,D is the deforma-
tion potential,eh14 is the piezoelectric constant,cl are sound
velocities for longitudinal and transverse phonons, andAl

are the anisotropy factors,28

Al~Q!5
9q4Qz

2

2Q6 , ~25a!

At~Q!5
8q2Qz

41q6

4Q6 . ~25b!

B. Approximate analytic form of D„q,v…

While it is possible to obtain exact expressions forD from
Eq. ~14! including the full anisotropy functions@Eqs. ~25a!
and ~25b!# and the form factors for infinite square wells,
these are extremely complicated. Therefore, we shall make
some well-controlled approximations explained below which
do not significantly affect the final results for the computed
transresistivity.

As we shall see shortly, the phonon-mediated effective
interactions are important only whenv is close toclq. For
thesev’s the integral overQz in Eq. ~14! is dominated by
contributions from nearQz50. We therefore remove all

Qz-dependent factors, except for the small energy denomina-
tor, from the integral which definesD. For example, one can
set Qz50 in the anisotropy factors given in Eqs.~25a! and
~25b!, yielding

Al'0, At'
1
4 . ~26!

Then the phonon-mediated effective interaction for two
equivalent infinite square wells with widthL and center-to-
center separation ofd is

n0Di j ~q,v!'2
3CDP

kFL
d i j

2CDP

qz l
2

kFA12z l
2

Bi j ~qdA12z l
2,qLA12z l

2!

2CPE

kF

qA12z t
2

Bi j ~qdA12z t
2,qLA12z t

2!.

~27!

Here, n05m* /p\2, the two-dimensional electron-gas den-
sity of states~so thatn0D is dimensionless!,

zl5
v

clq
1

i

2ql ph
, ~28!

CPE5
~eh14!

2m*

8p\2ct
2%kF

, ~29!

CDP5
D2m* kF

2p\2cl
2%

, ~30!

and

Bi j ~x,y!5H p2

y21p2 S 3y

2p2 1
1

y
1

1

2y2

p2

y21p2 @e22y21# D , i 5 j

exp~2x!S p2

y21p2D 2 sinh2~y!

y2 , iÞ j .

~31!

In the expressions above, the square root with a positive real
part should be taken.

Inserting numerical values for GaAs~m* 50.067me , cl
55.143105 cm/s, ct53.043105 cm/s, %55.3 g/cm3, eh14
51.23107 eV/cm, andD5213.0 eV!, gives the following
dimensionless coupling constants:

CPE'1.64310233
106 cm21

kF
, ~32!

CDP'2.7310233
kF

106 cm21 . ~33!

For the same subband wave functions, the bare interlayer
and intralayer Coulomb interactions are given by

n0Ui j ~q!5
qTF

q
Bi j ~qd,qL!, ~34!

whereqTF52pe2n0 is the Thomas-Fermi wave vector.~We
have absorbed the bulk dielectric constant of the semicon-
ductor in the electron charge.!

C. Strength of D21

For the RPA screened Coulomb interaction (URPA) in a
single-layer system, the magnitude ofn0URPA approaches 1
at long wavelengths. Although the corresponding value for
double-layer systems is smaller,3 it is useful to compare
n0D21 to this value. For our present illustrative purpose we
concentrate on the deformation potential term@i.e., theD2

term in Eq. ~23!#, which turns out to dominate except for
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very low-density electronic systems. Then, in the limit of
vanishing quantum well widths andl ph→`, we obtain

n0D21~q,v1 ih!'2CDP

v2

qkFcl
2A12v2/~qcl !

2

3exp~2dAq22v2cl
22!. ~35!

Note that the magnitude of the effective interactiondiverges
as q→v/cl from above or below.@We point out that the
transresistivity is strongly dependent on the widthL, and
therefore one should not take theL→0 limit when comput-
ing D. We use the full form given by Eq.~27! in subsequent
numerical calculations.#

The small prefactorCDP guarantees that the phonon-
mediated effective interaction is small compared to the Cou-
lomb interaction except nearv'qcl . The large value of the
interaction in this region of phase space reflects the large
phase space for intermediate states with small or vanishing
energy denominators whenv'qcl . ~Note that the phonon
energy varies slowly withQz for Qz near zero.!

The importance for drag of the sharp peak inD21(q,v) is
enhanced by the fact that it appears squared in Eq.~19!. As a
result, phonons do play an important role in frictional drag,
even though the typical value ofn0D21(q,v) is small. In
fact, if we ignore the effects of screening and letl ph→`, we
obtain an infinite transresistivity. This is easily seen from Eq.
~35!. The absolute valueD21 diverges like (clq2v)21/2 as
v approachesclq from both above and below. Inserting this
bare form of the interaction into Eq.~19! gives a uclq
2vu21 divergence in the energy-transfer integral for every
q, yielding an infinite transresistivity. This point does not
seem to have been emphasized in the existing theoretical
literature on this subject. As we show in the next two sub-
sections, including either a finite mean free path or screening
the interaction dynamically removes this spurious diver-
gence.

In Fig. 2 we plot n0uD21(2kF ,v)/e(2kF ,v)u near the
longitudinal resonance for different values ofl ph. It is use-
ful to comparen0uD21/eu to the screened interlayer Coulomb
interactionn0U21,RPA}exp(2qd)/(11qTF /q). In contrast to
the phonon-mediated interaction near the resonance,
n0U21,RPAdecreases rapidly below unity as a function of well
separation. Figure 2 partly explains how the ‘‘weak’’
phonon-mediated interaction can compete with the Coulomb
interaction as a mechanism for drag.

D. Effect of screening

From Eq.~27!, one sees that the presence of a finitel ph
cuts off the divergence and leads to a finite transresistivity.
Since the divergence in the integrand is of the form 1/uv
2clqu, it follows that r21 would be proportional to ln(l ph)
if screening were not important. When screening is included,
the drag resistivity does not diverge.

As shown in Eqs.~21! and ~20!, screening is accounted
for by dividing the bare interlayer interactionD21(q,v) by a
dielectric functione(q,v). WheneverD21(q,v) diverges at
v5clq, so doese(q,v). The screened interaction is there-
fore nondivergent, even whenl ph→`.

As we explain below, screening becomes important for
the phonon exchange drag only if the phonon mean free path
exceeds a critical valuel ph,crit. Sincel ph,crit is close to re-
alistic values, we investigate the two regimes separately in
the following two sections.

IV. LONG MEAN FREE PATH LIMIT

In this section we focus on the large phonon mean free
path limit, where a coupled electron-phonon mode turns out
to be of utmost importance. First we discuss the ideal case of
infinite l ph, where the coupled mode is broadened by the
coupling to the electronic system only. In this case we find
an analytic form for the coupled mode contribution. Second,
in Sec. IV B, we discuss how the collective mode contribu-
tion is modified by a finite mean free path and the conditions
for its experimental observation.

A. Infinite phonon mean free path limit

The approximate analytic results discussed below apply
only for layer separations smaller than a large but finite
maximum value which we specify below; for still larger
layer separations the analytic analysis is less revealing, and
we have relied more strongly on numerical studies.

We show below that forl ph→`, the real part ofe(q,v)
vanishes, and the imaginary part is small enough to yield a

FIG. 2. The two-dimensional electron density of states times the
screened phonon-mediated interactionn0uD21(2kF ,v)/e(2kF ,v)u,
as a function of frequency near the longitudinal resonancev
;2clkF . The dotted, dashed, and solid lines are forl ph

50.1 mm, 0.3 mm, and 1 mm, respectively. Other parameters are
d5500 Å andL5200 Å, and the densityn51.531011 cm22. The
coupled electron-phonon mode occurs whenn0 ReD21/Re@e#<
2

1
2 @see Eq.~37!#. The inset indicates that for the given parameters

the coupled electron-phonon mode develops atq52kF when l ph

*0.5 mm.
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sharp collective mode forv just belowqcl which contributes
strongly to the frictional drag between the two layers. To
make the following discussion as transparent as possible, we
limit our attention to the case of identical electron layers so
thatD225D11 andU115U22. We locate the collective mode
frequencyv0(q) by solving the equation Re@e(q,v0)#50. We
will be interested in momentum transfers near 2kF which
make the main contribution to the drag and systems with
kFd@1 so that we can neglectU21(q)}exp(22kFd). The
small layer separation approximation mentioned above con-
sists of settingD11'D12[D in Eq. ~21!, which is justified
for

d!
11qTF/2kF

16CDPkF
[dB , ~36!

as we show later. With these assumptions

W21~q,v!'
D21~q,v!

~12U11x!~12U11x22Dx!
. ~37!

The collective mode in which we are interested occurs near
v5clq!vFq, and hence is in the low-frequency regime for
x(q,v). HerevF is the Fermi velocity of the electronic sys-
tem. We therefore approximate Rex(q,v)'x(q,v50)5
2n0. We write the imaginary part of the polarization func-
tion in the form Imx(q,v)52n0d̃. In the low-frequency
limit of the RPA, d̃ (q,clq)'cl /(vFA12q2/4kF

2), except

near 2kF , where it is approximatelyAcl /2vF. d̃ is dimen-
sionless and has a wave vector and frequency dependence
which will be left implicit in the following discussion except
where emphasis is important. However, it is important for
the following discussion thatd̃ (q,clq) is generally small
compared to 1.

Because we are interested in large wave vectors nearq
52kF we include only longitudinal deformation potential
coupling. The calculation including transverse piezoelectric
mode followsmutatis mutandis. From Sec. III we have, forv
close to but smaller thanclq,

n0W21~q,v!5
2CDP

e0S kF

q
e0A12v2/cl

2q222CDPD2 i2CDPd̃

.

~38!

In this equatione0511qTF /q is the RPA static dielectric
function for an isolated layer. The collective mode occurs
where the real part of denominator of Eq.~38! vanishes at

v05clqA12S 2qCDP

kFe0
D 2

. ~39!

This collective mode results from coupling of the electron
layers to phonons withv close toclq. Expanding the de-
nominator of Eq.~38! around the pole, we find that forv
close tov0 ,

un0W21~q,v!u25
clq

3CDP
2

e0
3kF

2 d̃

G

~v2v0!21G2
, ~40!

where the width of the collective mode resonance is given by

G5
4 d̃ clq

3CDP
2

e0
3kF

2 . ~41!

Note that the width of the resonance is small compared to the
shift of the resonance fromclq and that the resonance line
shape is approximately Lorentzian only ifd̃ !1. Where this
condition is not satisfied, Eq.~40! will not be accurate.

Numerical calculations discussed below demonstrate that
for l ph→` the drag is dominated by coupling associated
with this collective mode resonance. Since the effective in-
teraction has a more rapid frequency variation than other
quantities in the expression for the transresistivity@Eq. ~19!#,
we may approximate the screened interaction near the reso-
nance by ad function:

un0W21~q,v!u25
clq

3CDP
2

kF
2e0

3 d̃
pd~v2v0!. ~42!

This approximation allows the frequency integral in Eq.~19!
to be performed, and the contribution from the coupled mode
to the transresistivity may be expressed as

r21,l'S h

e2D pKl

n2kBT E
0

`

dqS qa

e0
3 D n0 Im x~q,clq!

sinh2~\clq/2kBT!
,

~43!

wherea56 for the longitudinal phonons anda52 for the
transverse phonons, and where

Kl5
\D4

~4p!3cl
3%2 , ~44a!

Kt5
\~eh14!

4

210p3ct
3%2 . ~44b!

The q6/e0
3 term in the integrand above implies that forT

*TBG52\clkF /kB , the main contribution to the integral
comes from theq52kF region; i.e., large-angle scattering
dominates the phonon-mediated drag.

Comparing with Eq. ~2! we see that, at least for
l ph→`, the phonon-mediated drag can be compar-
able to or stronger than Coulomb drag, in spite of the
weak electron-phonon interactions. Crudely the condition
which needs to be satisfied is thatTBG is low enough
or the layer separation is large enough thatCDP

2 Acl /vF

*(kBTBG/eF)2(qTFd)22(kFd)22. For typical layer densities
in GaAs, this condition is satisfied for layer separations
larger than a few tens of nanometers, consistent with experi-
mental observations. When phonon-mediated drag is domi-
nant, r21 will be proportional to temperature forT@TBG.
Below TBG there will be a crossover to a regime where the
piezoelectric contribution dominates and the temperature de-
pendence goes approximately asT5. This can be seen from
Eq. ~43! by defining an integration variable proportional to
q/T, and taking theq dependence ofe0 into account. We
shall discuss this further in Sec. VI A. At extremely low
temperatures, the assumption that the drag rate is determined
by the resonancev.clq will break down.r21 is then domi-
nated by thev50 limit of D21 and will revert to the familiar
T2 law for carrier-carrier scattering in a Fermi liquid.
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Recall that we usedD21'D11 to obtain the above results.
From Eq.~27!,

D21
2 @q,v0,l~q!#

D11
2 @q,v0,l~q!#

'exp@22qdA2~12v0 /clq!#. ~45!

Hence, for the approximationD11
2 2D21

2 '0 to be valid, one
must have 2qdA2(12v0 /clq)!1. Together with Eq.~39!,
this gives the condition Eq.~36!. For l ph→`, the preceding
approximate calculation implies that there is no layer sepa-
ration dependence until this length, which for GaAs and typi-
cal densities corresponds tod;5000 Å, is reached. Numeri-
cal results show, however, that there is a weak distance
dependence on the transresistivity in this large-l regime.
This stems from the presence of a relatively long non-
Lorentzian tail forv,clq which contributes significantly to
the integral, as we will discuss below.

At larger layer separations, the interlayer phonon propa-
gatorD21 is reduced at the collective-mode frequency and
the two electron layers interact with the phonon system more
independently. We must then use a more refined expression
for the effective interaction:

W21~q,v!'
D21~q,v!

~12@U111D11#x!22D21
2 x2 . ~46!

A competition occurs between a decline in the coupling due
to suppression of the interlayer propagatorD21 and resonant
enhancement of the electron-phonon interaction near each
electron layer.

B. Coupled electron-phonon mode with finite mean free path

The above analysis is based on phonons with an infinite
mean free path, apart from the finite lifetimes due to interac-
tions with the electronic layers. Any real system will have
imperfections which will make the phonon lifetime finite
even when the electron layers are not present. Even when the
lattice is perfect and free of isotopic impurities, anharmonic-
ity and boundary scattering will cause phonon modes to de-
cay. In the following we represent all these effects in the
simplest possible way by assigning a common phenomeno-
logical mean free pathl ph to all modes.

The occurrence of coupled phonon-plasmon collective
modes, signaled by by a zero in the Re@e(q,v)#, requires a
cancellation between phonon-mediated and Coulomb inter-
action contributions. In the present section we will consider
the limit in which the phonon-mediated contributions to
e(q,v) can be neglected, i.e., the limit in whichun0Du!1
for almost all energy and momentum transfers and for both
intralayer and interlayer propagation. We will see that this
condition is satisfied except at long phonon mean free paths.

For v close toqcl and finitel ph ~but large compared to
q21!,

un0D21u'~qCDP /kF!uA12z l
2u21. ~47!

where z l is defined in Eq.~28!, and 12z l
2'12(v/qcl)

2

1 i /ql ph. There is a critical valuel ph,crit such that 1
2(v0 /clq)2&1/ql ph,crit, in which caseuRe@Di j #u never be-

comes large enough for Re@e#50 to have a solution, and the
collective mode ceases to exist. This critical value is given
by

l ph,crit5
e0

2kF
2

4CDP
2 q3 5

~11qTF/2kF!2

32CDP
2 kF

, ~48!

where, since large momentum transfers dominate the drag,
we have setq52kF . l ph,crit is even longer at smallerq’s,
and it seems improbable that the collective mode discussed
in Sec. III would ever be evident in inelastic light scattering
studies of long-wavelength electronic excitations. In GaAs,
and forkF'106 cm21, the critical mean free path is approxi-
matelyl ph,crit'0.2 mm. The actual mean free path of course
depends on the sample in question.

It is often the case that scattering of phonons off the
boundaries of the sample can be accounted for by taking the
mean free path in the absence of bulk scatterers to be equal
to the sample size. We argue below that for the present prob-
lem, the sample size in thez direction is usually irrelevant,
and that the maximum mean free path is given by the typi-
cally larger lateral dimension of the sample.

The phonons which contribute to the coupled mode are
those which are confined around the two-dimensional elec-
tron gases~2DEG’s!. The extent of the confinement is given
by rangeD21 in the z direction ~i.e., perpendicular to the
2DEG’s!. To study thez-direction range of the phonon field
participating in the collective mode, we look more closely at
which z region actually contributes to the coupling. We write
the effective phonon-mediated interaction given in Eq.~14!
as

D21~q,v1 id!5E dz dz8uw2~z!u2uw1~z8!u2

3K~q,v1 id,z2z8!, ~49!

where K(q,v1 id,z2z8) is the Fourier transform of the
phonon Green’s function and the electron-phonon coupling
matrix element with respect toQz ,

K~q,v1 id,z!5(
l
E dQz

2p\
eiQzzDl~Q,v1 id!uMl~Q!u2.

~50!

For a givenq andv, the spatial extent in thez direction of
K(q,v1 id,z) gives the range of the phonon field. Since the
collective-mode frequencies are very close tov5clq, the
relevant phonon wave vectors in thez direction are small,
and the same approximations used previously can also be
applied here, yielding an approximate form forK given by
Eq. ~35! with d replaced byuz2z8u, i.e., K(q,v1d,z2z8)
;exp(2uz2z8uAq22v2/cl

2). The spatial extent of the pho-
non field participating in the collective mode can be found
by substituting the frequency for modev0 into this exponen-
tial form, giving K;exp(2uz2z8u/dB), wheredB was defined
previously in Eq.~36!. For GaAs atn51.531011 cm22, dB
is approximately 5000 Å. Any boundaries or imperfections
beyond this range in thez direction have a negligible effect.

It is plausible that some existing experimental results are
for samples withl ph in the lateral direction comparable to
this critical mean free path, and hence partially reflect col-
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lective excitations of the electron-phonon system. However,
more experiments are needed before definite conclusions can
be drawn.

V. SHORT PHONON MEAN FREE PATH LIMIT

In the present section, we will consider the limit in which
phonon-mediated contributions toe(q,v) can be neglected,
i.e., l ph!l ph,crit. We begin our discussion by addressing the
distinction between the real and virtual phonon contribu-
tions. This we do partly due to somewhat confusing use of
these terms in the existing literature.

A. Real and virtual phonons

The phonon-mediated effective electron-electron interac-
tion D21(q,v), obtained here from diagrammatic perturba-
tion theory, can also be derived~with a little more work!
using elementary time-dependent perturbation theory starting
from an expression of the form29

D21~q,v!5(
I

^ i uĤe-phuI &^I uĤe-phu f &
Ei2EI1 ih

. ~51!

Here u i &, u f &, and uI & are the initial state, the final state in
which momentum has been transferred between the layers,
and an intermediate state in which the momentum to be
transferred is carried by a nonequilibrium phonon. The in-
finitesimal imaginary partih in the denominator enforces
causality,29 and plays a crucial role when intermediate and
initial or final states are close in energy. In time-dependent
perturbation theory, this form of effective interaction deter-
mines the transition rate between initial and final states when
the perturbing term in the Hamiltonian, the electron-phonon
interaction in the present case, does not directly couple initial
and final states. We therefore expect the phonon-mediated
effective interaction to play the same role in transport experi-
ments as the interlayer Coulombic interaction whichdoes
have direct matrix elements between initial and final states.
The intermediate state need not conserve energy, and, in the
jargon of time-dependent perturbation theory, is conse-
quently referred to as a virtual state.

The intermediate states are ones where a phonon of mo-
mentum Q5(q,Qz) has been created or destroyed by an
electron in layer 1 or 2. Summing over four intermediate
states for eachQz , and performing thermal averages, gives
the following expression for transition matrix elements with
2D wave-vector transferq:

D21~q,v!5E dQz

2p
uMl~Q!u2F1~Qz!F2~2Qz!F 1

v2vQ1 ih

2
1

v1vQ2 ih G . ~52!

Equation~14! reduces to this form forl ph→`, except that
we have, for simplicity, retained only the longitudinal
phonons in the present discussion.

Recalling that\v is the energy transferred between the
layers, and\vQ is the energy of the intermediate phonon,
when the denominator vanishes in Eq.~52! energy is con-
served in the intermediate state. Therefore, the real~imagi-
nary! part of the term in the square parentheses gives the
virtual ~real! phonon contribution. In analogy, we define the
virtual-phonon exchange contribution to the effective inter-
action as the contributions from ReD in Eq. ~14!, and the
real-phonon exchange contribution as that from ImD. Ignor-
ing the anisotropy factors in the phonon matrix elements for
the deformation potential, it turns out that in thel ph→`
limit, the entirev,clq contribution toD21 is ‘‘virtual’’ and
the entirev.clq contribution is ‘‘real.’’ In general, the di-
vision between the contributions are not so clearcut; at a
givenv andq both virtual and real contributions could exist
simultaneously.

In a semiclassical transport theory, real-phonon processes
result in a nonequilibrium distribution of phonons in a
coupled electron-phonon Boltzmann equation. In Appendix
A we derive an expression for the real-phonon exchange
contribution to the drag resistance using such a coupled
Boltzmann equation approach, and explicitly demonstrate its
equivalence to the purely real-phonon contribution ofD21 to
the drag. The appearance here of both virtual- and real-
phonon contributions to the transresistivity in a single Feyn-
man diagram is reminiscent of the appearance of both con-
tributions to the quasiparticle scattering rate30–32 in the
phonon exchange contribution to the electron self-energy of
a 3D electron-phonon system.

B. Reciprocal-space calculation

In the following subsections we elucidate the physics of
the drag for short phonon mean free paths. Whenl ph
!l ph,crit, we can set theDi j factors in the expressione to
zero. The screened interlayer interaction is then simply

W21~q,v!.
D21~q,v!

„12U11~q!x~q,v!…2 .
D21~q,v!

e0
2 , ~53!

where we have taken the static limit ofx appropriate for
temperatures comparable toTBG. The transresistivity is then
given by

r21,l.
2\2

8p2e2n1n2kBT

3E
0

`

dqq3
Im x1~q,clq!Im x2~q,clq!

sinh2~\clq/2kBT!

1

n0
2e0

4

3E
0

`

dvun0D21~q,v!u2. ~54!

We have factored terms which vary slowly with respect tov
out of thev integration, sinceD21(q,v) is relatively sharply
peaked aroundv5clq.

From Eqs.~27! and ~31!, n0D12 for v'clq is given ap-
proximately by
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n0D21~q,v!.H 2q2CDPf cut~ q̃ !exp~2d q̃!/~kF q̃ !,

q2CDPf cut~ q̃ !exp~ id q̃2vd/2cll phq̃ !/~ ikF q̃ !,

q2v/cl@l ph
21

v/cl2q@l ph
21,

~55!

whereq̃5uq22(v/cl)
2u1/2, andf cut( q̃) is a function~depen-

dent on the form factor! which cuts off atq̃;L21.
In the clq.v case, the effective interaction is dominated

by virtual phonon exchange, whereas, in thev.clq case,
the integral is dominated by energy-conserving intermediate
states and the effective interaction is due to real-phonon ex-
change. The analytic expression for the integral is compli-
cated in the small region whereuv2clqu,cl /l ph, and we
ignore it in our treatment below. The smallerl ph is, the
wider this region becomes, and hence the expressions de-
rived below are not quantitatively valid for smalll ph ~below
104 nm for typical parameters in GaAs!; however, the ex-
pressions seem to exhibit the correct qualitative behavior
when compared to numerical calculations even for small
l ph.

Parameters of experimental systems studied to date satisfy
the inequalitiesl ph@d.L and (2kFL)2@1. It follows that
for v nearclq the integrand of the frequency integral in the
drag resistivity expression is proportional toq̃22'(2quq
2v/cl u)21. The logarithmic divergence of the integral is cut
off at small q̃ by the validity limits in Eq.~55!, and at large
q̃ by the exponential suppression factors or cutoff functions
which appear in Eq.~55!. For the real-phonon contribution
we find

E
qcl

`

dvun0D21~q,v!u2

.
q3CDP

2 cl

kF
2 E

q̃ min
r

q̃ max
r

d q̃
exp~2qd/l phq̃ !

q̃

5
q3CDP

2 cl

kF
2 FEiS 2dA2q

l ph
D 2EiS 2

qdL

l ph
D G ,

~56!

where

q̃min
r 5~q/2l ph!

1/2,

q̃max
r 5L21, ~57!

and Ei(x)[*2`
x dt exp(t)/t is the exponential integral, which

has the limiting behavior

Ei~2x!; H ln~x!, 0,x!1
2exp~2x!/x, x@1. ~58!

The upper cutoffq̃max reflects the fact that it is impossible to
excite phonons with az-wave vector larger thanL21. The q̃
integration in Eq.~56! can by physically interpreted as fol-
lows. The velocity component of a phonon in thez direction
is approximatelycl q̃ /q, and hence the time taken to travel a
distanced in the z direction is

t trans5qd/cl q̃ . ~59!

The exponential factor in Eq.~56! is exp(2ttranscl /l ph),
which is the probability that a real phonon emitted from one
layer reaches the other.

For the virtual-phonon contribution we find

E
0

qcl
dvun0D21~q,v!u2.

q3CDP
2 cl

kF
2 E

qmin
v

`

d q̃
exp~22d q̃!

q̃

52
q3CDP

2 cl

kF
2 EiS 2dA2q

l ph
D ,

~60!

whereqz,min
v 5(q/2l ph)

1/2 is also given by the validity limit in
Eq. ~55!. The term in the exponent can be interpreted as the
probability that a virtual phonon emitted by one layer
reaches the other. The lifetime of the virtual state which is
given by the energy-time uncertainty relationDt;(q/cl

2v)21; q̃ 2/clq. The probability is exp(2ttrans/Dt), where
the transit time is given in Eq.~59!. This gives the exponen-
tial factor, and hence the distance dependence in Eq.~60!.

Only the sum of the two contributions will be observed in
experiments. Adding the two terms yields

E
0

`

dvun0D21~q,v!u2'2
q3clCDP

2

kF
2 EiS 2

qdL

l ph
D'

q3clCDP
2

kF
2 3H lnS l ph

qLdD , qLd/l ph!1

l ph exp~2qLd/l ph!/~qLd!, qLd/l ph@1.

~61!
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Inserting Eq.~61! into Eq. ~54!, we obtain

r21'S h

e2DKl

Ei~22kFLd/l ph!

n1n2kBT

3E
0

`

dqS qa

e0
4 D Im x1~q,clq!Im x2~q,clq!

sinh2~\clq/2kBT!
,

~62!

whereKl was defined in Eq.~44a!, and againa56 for l
5 l and a52 for l5t. The argument of the exponential
integral was replaced by the typical valuel ph/2LkFd since it
varies slowly over the large-angle scattering region which
dominates the integral (kF5min@kF,1 ,kF,2#). Equation~62!
gives low-T power laws forr21 of T10 for l5 l andT6 for
l5t.

The distance dependence in the short phonon mean free
path limit has now been made explicit; asd is increased, the
transresistivity falls logarithmically whenl ph/2LkFd*1,
and exponentially whenl ph/2LkFd&1. The dependence of
the transresistivity upon temperature, electron density, and
the ratio of the electron densitiesn1 /n2 is given by the re-
maining integral over the wave vector, which essentially ex-
presses the phase space available for large angle scattering,
as we shall discuss in Sec. VI.

C. Real-space calculation

In many physics problems, translational invariance and
time independence makes reciprocal-space calculations, like
the one presented in Sec. V B simple and convenient. It is
often the case, however, that the corresponding real-space
calculations provide a useful alternate language for physical
interpretation. In the present case the frequency integral in
Eq. ~54! is equivalent to an integral over time,

E
2`

`

dvun0D21~q,v!u252pE
2`

`

dtun0D21~q,t !u2, ~63!

where

n0D21~q,t !.
clqCDP

2pkF
E

2`

`

dQzF1~Qz!F2~2Qz!D~Q,t !,

~64!

and the real-time, retarded, phonon propagator is given by

D~Q,t !522Q~ t !sin~vQt !e2t/2tph, ~65!

where tph5l ph/cl . Since the important values ofQz are
small compared toq, we can expand

vQ5clAq21Qz
2'clq1

cl

2q
Qz

2 . ~66!

Notice that the phonons have a quadratic dispersion in theQz
direction, but a linear dispersion in the plane of the electron
layers. TheQz integration in Eq.~64! can now be performed
if we model the density profiles as Gaussians, so that

F1(Qz)F2(2Qz)5e2L2Qz
2
e2 idQz. We find that

E
2`

`

dvun0D21~q,v!u2

'
cl

2q2CDP
2

LkF
2 E

0

`

dt e2t/tph

expS 2
1

2

d2

L21S cl t

2qL
D 2D

AL21S cl t

2qL
D 2

.

~67!

This expression suggests a picture in real time for the
phonon-mediated interaction. The integrand of the time inte-
gral is recognized as a wave packet which is centered around
one well, and which broadens and decays as time evolves.
When the wave packet is broad enough to reach the other
well, a transfer of momentum~parallel to the layers! can
occur. The distance dependence of the interaction is deter-
mined by the time dependence of the intensity of the phonon
field disturbance at the other well. Sinced2@L2 there will be
no contributions to the integral in Eq.~67! until t.t*
5qLd/cl which corresponds to the time it takes the wave
packet to reach the second well. Fort.t* the square of the
amplitude of the wave packet at the second well@the inte-
grand in Eq.~67!# falls off as 1/t until it is eventually cut off
at t.tph. If tph,t* , then only the exponentially small tail
of the phonon field impinges on the second well. Defining
s[cl t/qLd the time integral, Eq.~67! can be written

E
2`

`

dvun0D21~q,v!u2'
2CDP

2 clq
3

kF
2 E

1

`

ds
1

s

3expS 2qL
d

l ph
sDexpS 2

2

s2D .

~68!

This integral cannot be evaluated analytically, but ass.1
the term exp(21/2s2) can be approximated by unity. The
resulting integral then yields Eq.~61!. Therefore, thed de-
pendence ofr21 can be interpreted as coming from the inter-
play of the layer separation and the range of the phonons,
which mediate the drag.

In the regime of short phonon mean free paths, the drag is
mediated by damped phonons, some of which spread over
large distances in thez direction. Hence in this regime the
boundaries in thez direction will limit the effective l ph.
When boundary scattering dominates, a complete theory
would require a realistic description of phonons scattering
off the sample boundaries. This is in contrast to the limit
l ph@l ph,crit, where the drag is dominated by a coupled
mode which is localized on the length scale ofdB , and
boundaries beyond this range are irrelevant.

VI. NUMERICAL RESULTS

The results presented in this section were obtained by
numerical evaluation of the transresistivity formula@Eq.
~19!# using the complete expressions for both the effective
interaction@Eq. ~14!# and the screening function@Eq. ~21!#.
Although these numerical calculations are free of some of
the approximations used in the preceding sections in order to
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obtain transparent analytic results, we do not expect them to
be exact. In particular, corrections to the random-phase ap-
proximation for screening must have some quantitative im-
portance, and are difficult to estimate reliably.

Except where noted, the layer density was chosen to have
the typical valuen151.531011 cm22 which yields a Fermi
temperature ofTF5«F /kB.60 K. The GaAs material pa-
rameters are taken from the literature, and were given in Sec.
III B. 33

A. Temperature dependence

As mentioned in Sec. I the transresistivity increases
roughly asT2 at low temperatures if the effective interaction
between the layers is frequency independent. Deviations
from this behavior are indicative of retarded effective inter-
actions. In particular, the phonon-mediated contribution to
r21 grows approximately asT10 for the deformation poten-
tial, and asT6 for the piezoelectric contribution. Both cross
over to a linear dependence onT at approximately their re-
spective Bloch-Gru¨neisen temperatures. In Fig. 3, we plot
r21/T2 as a function ofT. The shape of this curve is a result
of an effective interaction which, for eachq, is sharply
peaked as a function of frequency aroundv5clq. This peak
in the frequency integral, which produces the dominant con-
tribution to the phonon-mediated drag, is cut off exponen-
tially by the thermal phase-space factor when\clq.2kBT.
This implies that only phonons with energies less than the
temperature can participate in the drag. The crossover from
T5 or T6 ~where the piezoelectric coupling dominates! to a
linearT dependence ofr21 ~hence the peak inr21/T2! occurs
when the 2kF phonons, which are responsible for most of the
momentum transfer in the systems, can be excited. The peak
is expected to occur near the temperature scaleTBG
5\2clkF /kB , which is 7.8 K for the parameters used in Fig.
3. It in fact occurs at aroundTpeak'2.5 K'TBG/3. For T
*TBG the contribution of the deformation-potential phonons

is approximately 50–100 times greater than that of the piezo-
electric phonons for the parameters used in the figure.

We also plot the results of Eq.~43! and the experimental
results from Ref. 4. One can see that for the long mean free
path approximation, and small layer separation, Eq.~43! un-
derestimates the contribution of the mode. An investigation
of the integrand indicates that this is due to a rather long
non-Lorenzian tail in thev,clq regime, which can be seen
in the solid curve of Fig. 8 discussed below.

Comparison of the magnitude of the experimental points
and the theoretical curves seems to indicate that effects of the
collective mode have been observed. However, as we caution
in Sec. VI D, this should not be construed as definitive proof
of the existence of the mode.

B. Density dependence

From Eqs.~43! and ~62! the transresistivity at matched
densities is proportional to 1/n2 times an integral whose
value primarily reflects the allowed phase-space volume for
an exchange of phonons with large planar and small perpen-
dicular momenta. The maximum planar momentum transfer
q52kF is proportional to the square root of the density. At
temperatures larger thanTpeak, the phase-space integral
should therefore increase with density, reflecting the larger
possible momentum transfers. At temperatures well below
Tpeak, on the other hand, phonons atq52kF cannot be ex-
changed, and a higher-density cannot be exploited. Conse-
quently, in the case where the density is changed at a fixed
temperature, the following behavior should be observed. For
low densities, the increase in densityn permits larger mo-
mentum transfers, thus increasing the transresistivity. At
somen, a further increase does no good as the 2kF wave
vectors cannot be excited, and this leads to an overall de-
crease inr21. The resulting curve forr21 has a bump or
maximum as a function of the density. The position of the
bump or maximum increases with increasing temperature,
for the reasons stated above. Figure 4 shows the density de-
pendence of the transresistivity for four different tempera-

FIG. 3. The scaled transresistivityr12/T2 as a function of tem-
perature for~in increasing order! l ph5104, 105, 106, 107, and
108 nm. The parameters used aren51.531011 cm22, L5200 Å,
andd5500 Å in GaAs. The dots are data points obtained from Ref.
4, and the dotted line is given by Eq.~43!. Inset: Log-log plots for
the theoretical curvesl ph5104 to 108, showing the crossover from
T6 to T behavior. The dotted lines are for reference.

FIG. 4. The transresistivity as a function of matched densitiesn
for ~a! l ph51 mm and ~b! l ph51 mm. The temperatures areT
51, 2, 3, and 4 K for dash–triple-dotted, dash-dotted, dashed, and
solid lines, respectively. Other parameters as in Fig. 3. The ratio
l ph/l ph,crit varies in~b! from 0.55 forn50.531011 cm22 to 14.6
for n52.531011 cm22.
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tures,T51, 2, 3, and 4 K andl ph51 mm ~short mean free
path regime! and 1 mm~coupled-mode-dominated regime!.

While the general features discussed above are seen in
both regimes, Fig. 4 still shows a qualitative difference be-
tween the two. The reason is twofold. A comparison of Eqs.
~43! and~62! reveals that there is an extra factor of Im@x# in
the integrand of Eq.~62!. Since Im@x# decreases with in-
creasingkF , r21 falls faster with increasing density in the
short mean free path regime than in the coupled-mode re-
gime. More importantly,l ph,crit is strongly dependent on
density:l ph,crit}(2kF1qTF)

2/kF
5 . Hence increasing the den-

sity can make the coupled mode more and more dominant
and lead to an increase ofr21. As seen in Fig. 4, the differ-
ence in density dependence could provide a clue regarding
which of the two regimes prevails in a particular sample.

C. Density-ratio dependence

The transresistivity is strongly dependent on the electron-
density ration1 /n2 . For temperatures well below the Fermi
temperature, the maximum planar momentum transfer isq
52kF,min , wherekF,min is the Fermi wave vector of the elec-
tron gas with the lowest density. Decreasing one density will
lead to a decrease inr21; a decrease also occurs if one den-
sity is increased because of the general 1/n1n2 dependence.
The resulting peak at equal densities, illustrated in Fig. 5, is
independent of temperature and does not occur for the Cou-
lombic drag mechanism~in the absence of any plasmon
effects14,16!. This difference was used4 to separate Coulomb
and phonon drag mechanisms experimentally when the layer
separation is sufficiently small that the Coulomb mechanism
is of comparable importance.

The calculations were done for both short and long mean
free path regimes. However, the shape of the curves are so
much alike that it is unlikely that a density-ratio measure-
ment can be used to differentiate these two regimes in an
experiment.

D. Mean free path dependence

In Sec. VI C we explained that there is a criticall ph be-
yond which a collective mode appears which enhances the

overall transresistivity. In Fig. 6, we plot numerical results
for the transresistivity as a function of the mean free path for
T53 K and d550 nm. Forl ph,l ph,crit, we are in the re-
gime where the electron-phonon interaction is separately
screened in the two layers, andr21 increases logarithmically
with l ph. We see in Fig. 6, when the mean free path exceeds
l ph,crit and the collective mode starts to emerge, that the
transresistivity increases more rapidly before saturating at a
value given roughly by the estimate given in Eq.~43!. By
splitting the contributions into real (v.clq), virtual (clq
2v@v0), and coupled modes (v'v0), we show in the
inset of Fig. 6 that the increase inr21 which occurs whenl ph
exceedsl ph,crit comes mainly from the coupled-mode contri-
bution.

In the low-temperature regime where the drag experi-
ments were performed,l ph is certainly sample dependent,
but should be temperature independent for a given sample.
Extrapolating the logarithmicl ph dependence~i.e., which
neglects effects of collective screening! in Fig. 6 for thed
550 nm case, we find that the value ofl ph required to fit
measured values4 of r21 ('12 mV) are ~literally! astro-
nomical in magnitude. This could be taken as evidence of the
importance of cooperative screening and collective modes in
present experimental systems. On the other hand, our nu-
merical calculations are dependent on random-phase-
approximation estimates of Imx, which are likely to require
substantial numerical revision34 especially in the important
region nearq52kF . These corrections will increase Imx,
and could possibly boost the theoretically calculatedr21 to
experimental values without invoking the coupled electron-
phonon mode. The random-phase approximation for the
screening function can also lead to a quantitative discrep-
ancy. Hence we do not claim that there is incontrovertible
experimental evidence for the existence of the coupled
electron-phonon mode.

E. Layer separation dependence

It is possible to prepare a series of double-quantum-well
systems which are substantially identical apart from the

FIG. 5. The scaled transresistivityr21T
21n1 /n2 as a function of

the density ration1 /n2 for ~in increasing order! T51, 2, 3, 4, 5, and
6 K, n251.531011 cm22, d550 nm, ~a! l ph51 mm, and~b! l ph

510 cm. Other parameters are as in Fig. 4.

FIG. 6. The transresistivity as a function of the mean free path,
for d550, 3000, and 53104 nm ~solid, dotted, and dashed lines,
respectively!. The density is 1.531011 cm22, andT53 K. Inset:
Real-phonon, virtual-phonon, and coupled-mode contributions~dot-
ted, dashed, and solid lines, respectively! for transresistivity as a
function of mean free path, ford550 nm andT53 K.
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separation between the 2D electron layers.4,35 Experiments
on such a series of samples will give a more certain indica-
tion of the operative phonon exchange regime than experi-
ments on a single sample.

In Fig. 7 we plot the transresistivity as a function of the
separation between the wells, for various phonon mean free
paths. Forl ph small enough that the collective mode has not
developed,r21 exhibits a purely logarithmic dependence on
d, until d exceedsl ph/(2kFL), when it begins to fall expo-
nentially. For l ph*l ph,crit, the behavior is more complex.
The collective mode develops, andr21 is considerably en-
hanced. For smalld, our numerical results suggest thatr21
also decreases logarithmically withd, in contradiction with
the d independence implied in Eq.~43!. Figure 8, which
shows the integrand of the transresistivity expression as a

function of frequency atq52kF , indicates that there is a
substantial non-Lorenzian tail forv,clq2v0 , which is not
taken into account in the analysis leading to Eq.~43!. This
tail contributes to the nearly logarithmicd dependence in the
regime where the collective mode contributes significantly.

Another surprising result is that, in this regime,r21 does
not decrease monotonically asd is increased. Instead there is
a peak whend'Al ph,crit/kF. Beyond this layer separation,
the electron-phonon collective mode of the double quantum
well begins to decouple into two weakly coupled modes cen-
tered around each well. This is illustrated in Fig. 8, where we
compare the frequency integrands ford,Al ph,crit/kF andd
.Al ph,crit/kF. As d is increased further beyondAl ph,crit/kF,
the transresistivity eventually resumes its decline.

VII. SUMMARY AND CONCLUSIONS

Phonon exchange contributes importantly to the frictional
drag resistance between nearby electron layers, and is the
dominant drag mechanism at large two-dimensional layer
separations. In this paper we reported on a thorough theoret-
ical analysis of this drag mechanism. We find that drag in-
cludes contributions due to exchange of both virtual and real
phonons, and that coupled collective modes of the 2D elec-
tron and 3D phonon systems can play a role depending on
sample geometry and material parameters. We distinguish
two regimes based on the relationship between the phonon
mean free path and a crossover length scalel ph,crit which is
typically of the order of 0.2 mm. It is possible that the mean
free path for high quality molecular-beam epitaxy grown het-
erostructures can exceedl ph,crit at low temperatures.

In the short mean free path regime the dominant drag
processes at momentum transferq have an energy transfer
just belowclq for virtual phonons, and just aboveclq for
real phonons. The drag rate in this case decreases logarith-
mically with layer separationd, until d reaches da
5l ph/2kFL;l ph. The weak layer separation dependence
comes nearly entirely from the virtual-phonon exchange con-
tribution. Ford.da , the virtual-phonon exchange contribu-
tion is small and the real-phonon exchange contribution de-
creases exponentially with layer separation. The real-phonon
exchange contribution to the drag is consistent with expecta-
tions based on the coupled Boltzmann equations for the elec-
tron and phonon systems, and the exponential falloff ford
.da can be understood in terms of the decay length for the
disturbance of the steady-state phonon system as the result of
current flowing in one of the electron layers.

For samples with phonon mean free paths larger than
l ph,crit, a collective mode involving both electronic and lat-
tice degrees of freedom emerges below the continuum of 3D
phonon energies with 2D wave vectorsq near 2kF . The
existence of this mode enhances the drag. In this regime the
drag also has a roughly logarithmic layer separation, untild
reaches another crossover lengthdB5(11qTF/2kF)/
16kFCDP. For typical samples,dB;0.5mm. At this layer
separation the collective mode separates into weakly coupled
modes associated with the individual 2D layers. Although
the drag has a complicated and nonmonotonic layer separa-
tion in this regime, it does ultimately decline with increasing
d. These findings are summarized in Table I.

There are, unfortunately, few existing experiments on the

FIG. 7. The transresistivity as a function of the well separation
for ~in increasing order! l ph5103, 104, 105, 106, 107, and 108 nm,
at T53 K, n51.531011 cm22, andL5200 Å.

FIG. 8. The integrand as a function ofv for q52kF and l ph

5`, for d550 nm ~solid!, d533103 nm ~dashed! and d
553104 nm ~dotted!. Other parameters are as in Fig. 7. As the
well separation increases, and the electron-phonon mode decouples
into two weakly coupled individual modes, leading to the twin-
peaked structure atd533103 nm. At large well separations, the
collective modes do not contribute to the transresistivity, and the
entire momentum transfer is due to the real phonons.
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long distance dependence of the phonon-mediated drag resis-
tivity. More experimental work will be needed to understand
the range of possible behaviors and their dependence on sys-
tem parameters. We note, however, that the preliminary ex-
perimental results by Gramilaet al.35 are consistent with a
logarithmicd dependence.
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APPENDIX: BOLTZMANN EQUATION DERIVATION
OF THE PHONON DRAG

A sketch of the derivation of the contribution due to real
emission of phonons is given here. This Boltzmann equation
approach has been used previously to estimate the real pho-
non contribution to the drag.4,36

Assume that the distribution function of the driving layer
is a drifted Fermi Dirac. Then the deviation functionc i(k)
[d f 0,i(k)/@„12 f 0,i(k)…f 0,i(k)# ~where f 0,i is the equilib-
rium distribution function in layeri ! for a driving fieldeE1
in the x direction is

c1~k!5
teE1

kBT
vx~k!. ~A1!

The generation of nonequilibrium phonons is given by the
electron-phonon coupling, and is

S ]N~Q!

]t D
gen

52
2p

\

2

V (
k

ug1~Q!u2d~«k1q2@«k1\vQ# !

3 f 0,1~k!@12 f 0,1~k1q!#N0~Q!

3@c1~k!2c1~k1q!1F~Q!#, ~A2!

F~Q!5dN~Q!/$N0~Q!@11N0~Q!#%, ~A3!

wheredN is the nonequilibrium distribution of phonons, and
N0(Q)5@exp(\vQ /kBT)21#21. The coupling constant
g1(Q) is given by

g1~Q!5uM ~Q!u2uF1~Qz!u2. ~A4!

Since the phonon coupling constant is small, we ignore the
F~Q! term in Eq.~A2! because it is higher order ing.

Then, one can write the phonon generation rate„using the
identity f 0(e)@12 f 0(e1v)#5@ f 0(e)2 f 0(e1v)#@N0(v)
11#…,

S ]N~Q!

]t D
gen

52
2

Lz
ug~Q!u2N0~Q!@11N0~Q!#

3
qteE1

m* kBT
Im x~q,vQ!. ~A5!

The phonon Boltzmann equation is

vz

]F~Q,z!

]z
5d~z!2ug~Q!u2

qxteE1

m* kBT
@2Im x~q,vQ!#

2
F~Q,z!

tph
, ~A6!

whose solution is

F~Q,z!52
2ug1~Q!u2qxteE1

m* kBTuvz~Q!u
Im x1~q,vQ!

3expS 2U z

vz~Q!tph
U D u~zQz!. ~A7!

The electron-phonon collision term in layer 2 is

S ] f

]t D
2

52
2p

\

2

V (
Q

ug2~Q!u2$2d~«k1q2«k1\vQ!

3@11N0~Q!#F~2Q!1d~«k1q2«k2\vQ!

3N0~Q!F~Q!%. ~A8!

Using F(2Q)52F(Q), the total momentum transfer to
the second layer is

TABLE I. Table summarizing the distance behavior for the
collective-mode regime and for the damped-phonon cases.

l ph l ph!l ph,crit l ph@l ph,crit

Physics Damped phonons Couplede-ph mode

d d!da d@da d!dB d@dB

Distance
dependence

ln(da /d)
da

d
exp~2d/da!

Weak
~logarithmic!

Complicated
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S ]p

]t D
2

52pE dq

~2p!2

qqxteE1

m* kBT E
0

` dQz

2p

2ug1~Q!u2ug2~Q!u2

vz~Q!

exp@2d/vz~Q!tph#

4 sinh2~\vQ/2kBT!
Im x1~q,vQ!Im x2~q,vQ!. ~A9!

Given thatvQ5cQ, the transresistivity can be expressed in the following form:

r215
E2

J1
5

2~dp2,x /dt!m*

e2n1n2E1t
5

21

8p2e2n1n2kBT E
0

`

dqq3

3E
0

`

dv
Im x1~q,v!Im x2~q,v!

sinh2~\v/2kBT!

v2uF1~A~v/cl !
22q2!u2uF2~A~v/cl !

22q2!u2uM ~q,A~v/c!22q2!u4

cl
2@v22~qcl !

2#

3expS 2
d

cltphA12cl
2q2/v2D . ~A10!

In comparison, the expression for the ‘‘real’’ contribution
to the transresistivity is

r215
2\2

8p2e2n1n2kBT E
0

`

dq q3

3E
0

`

dv@D21,real#
2

Im x1~q,v!Im x2~q,v!

sinh2~\v/2kBT!
,

~A11!

where

D21,real~q,v!5E
2`

` dqz

2p\
uM ~q,qz!u2F1~Qz!F2~2Qz!

3Im D~Q,v!,
~A12!

Im D~Q,v!5F 1/2tph

~v1clAq21qz
2!21~1/2tph!

2G
2F 1/2tph

~v2clAq21qz
2!21~1/2tph!

2G .

For small 1/tph, the poles of the Lorenzian are

qz56A@v1 i /~2clt!#22q2,
~A13!

'6Av2/cl
22q26 i

v

2tcl
2Av2/cl

22q2
.

As they lie close to the real axis, the Lorenzians can in gen-
eral be approximated byd(v6clAq21qz

2). The imaginary
part of the pole, however, does affect the exp(2iQzd) term
which comes from the difference in the phases of the form
factorsF1(Qz) andF2(2Qz). The Qz integration results in
the insertion of the imaginary part of the pole into the expo-
nent, yielding

D21,real~q,v!'
21

\
uM ~q,Av2/cl

22q2!u2F1~Av2/cl
22q2!

3F2~Av2/cl
22q2!

v

cl
2Av2/cl

22q2

3expS 2
d

2cltphA12cl
2q2/v2D . ~A14!

Substituting Eq.~A14! into Eq. ~A11! gives Eq.~A10!.
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