137 research outputs found

    PLANTS FROM ILFOV COUNTY PRESENT IN "ALEXANDRU BELDIE" HERBARIUM

    Get PDF
    The present article describes the plants collected from Ilfov County area and presented in “Alexandru Beldie” Herbarium from “Marin Drăcea” National Institute for Research and Development in Forestry. The article presents the studied material, the number of vouchers with species harvested from this area as well as some characteristics of the plant collections. The most important species collected from Ilfov County are also mentioned, with an analysis of their characteristics: the collection’s creation period and the plant’s harvesting periods. The found genera were systematized, with an emphasis on the most representative ones. Furthermore, the specialists that had an important contribution for the representation of county area within the herbarium are also mentioned and honored

    THE CHARACTERISTICS OF SOME ANIMAL SPECIES FROM DOLJ COUNTY AND THE IMPORTANCE OF THEIR CAPITALIZATION

    Get PDF
    Dolj Forest District manages a surface of 59 800 ha public forest fund and 9 125 ha private property forest fund. Non-wood forest products represent an important part for all industries, as well as for the gastronomic and artisanal domains. In this context, the present paper presents the importance of capitalizing game species and the need for this sector’s development, by taking into account three species frequently found in this area. The crop goose (Anser fabalis) is a species with a high price for the raw product as well as for the derived products. Partridge (Perdix perdix) has a smaller harvesting period and distribution range and the largest quantities are found in forest units of Amaradia, Perișor and Filiași. Pickerel (Esox lucius) is a very popular species, with a high selling potential and an increased market request. These species belong to the 8 game species that were analyzed through the AHP interval based on 19 criteria

    Historical and contemporary factors generate unique butterfly communities on islands

    Get PDF
    Vodă, Raluca et al.The mechanisms shaping island biotas are not yet well understood mostly because of a lack of studies comparing eco-evolutionary fingerprints over entire taxonomic groups. Here, we linked community structure (richness, frequency and nestedness) and genetic differentiation (based on mitochondrial DNA) in order to compare insular butterfly communities occurring over a key intercontinental area in the Mediterranean (Italy-Sicily-Maghreb). We found that community characteristics and genetic structure were influenced by a combination of contemporary and historical factors, and among the latter, connection during the Pleistocene had an important impact. We showed that species can be divided into two groups with radically different properties: widespread taxa had high dispersal capacity, a nested pattern of occurrence, and displayed little genetic structure, while rare species were mainly characterized by low dispersal, high turnover and genetically differentiated populations. These results offer an unprecedented view of the distinctive butterfly communities and of the main processes determining them on each studied island and highlight the importance of assessing the phylogeographic value of populations for conservation.This research was supported by the Spanish Ministerio de Economía y Competitividad (Project CGL2013-48277-P) and from the European Union’s Seventh Framework programme for research and innovation under the Marie Skłodowska-Curie grant agreement No 609402 - 2020 researchers: Train to Move (T2M) postdoctoral fellowship to R. Vodă, and by the projects “Barcoding Italian Butterflies” and “Barcoding Butterflies of the Tuscan Archipelago National Park.” V. Dincă was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (project no. 625997). L. Dapporto was supported by European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant (project no. 658844 Eco-PhyloGeo).Peer Reviewe

    Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies

    Get PDF
    [Background] Chromosomal rearrangements have the potential to limit the rate and pattern of gene flow within and between species and thus play a direct role in promoting and maintaining speciation. Wood white butterflies of the genus Leptidea are excellent models to study the role of chromosome rearrangements in speciation because they show karyotype variability not only among but also within species. In this work, we investigated genome architecture of three cryptic Leptidea species (L. juvernica, L. sinapis and L. reali) by standard and molecular cytogenetic techniques in order to reveal causes of the karyotype variability.[Results] Chromosome numbers ranged from 2n = 85 to 91 in L. juvernica and 2n = 69 to 73 in L. sinapis (both from Czech populations) to 2n = 51 to 55 in L. reali (Spanish population). We observed significant differences in chromosome numbers and localization of cytogenetic markers (rDNA and H3 histone genes) within the offspring of individual females. Using FISH with the (TTAGG) n telomeric probe we also documented the presence of multiple chromosome fusions and/or fissions and other complex rearrangements. Thus, the intraspecific karyotype variability is likely due to irregular chromosome segregation of multivalent meiotic configurations. The analysis of female meiotic chromosomes by GISH and CGH revealed multiple sex chromosomes: W1W2W3Z1Z2Z3Z4 in L. juvernica, W1W2W3Z1Z2Z3 in L. sinapis and W1W2W3W4Z1Z2Z3Z4 in L. reali.[Conclusions] Our results suggest a dynamic karyotype evolution and point to the role of chromosomal rearrangements in the speciation of Leptidea butterflies. Moreover, our study revealed a curious sex determination system with 3–4 W and 3–4 Z chromosomes, which is unique in the Lepidoptera and which could also have played a role in the speciation process of the three Leptidea species.This research was funded by Grant 14-22765S of the Czech Science Foundation, Grant IAA600960925 of the Grant Agency of The Czech Academy of Sciences, Grant 063/2012/P of the Grant Agency of the University of South Bohemia and Grant CGL2013-48277-P from the Spanish Ministerio de Economía y Competitividad. JŠ and AV were supported by Grant 052/2013/P of the Grant Agency of the University of South Bohemia, VD by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (project no. 625997), PN by Grant 14-35819P of the Czech Science Foundation and KS by JSPS 23380030 grant and JSPS Excellent Young Researchers Overseas Visit Program (21–7147).Peer reviewe

    Climate change may cause the extinction of the butterfly Lasiommata petropolitana in the Apennines

    Get PDF
    Climate change represents a threat to narrow-ranged mountain species living in low-altitude massifs. We studied the disjunct Apennine population of Lasiommata petropolitana (Lepidoptera, Nymphalidae) in the Gran Sasso and Monti della Laga National Park. We quantified the altitudinal shifts undergone in the last decades (1964–2021) in the Alps and Apennines and estimated the local extinction risk due to climate change. We also sequenced the COI mitochondrial marker of seven Apennine specimens, comparing them with those available across the Palearctic. We projected the probability of presence for the species under a future climatic scenario using an ensemble forecasting approach. We found that, despite geographical isolation, the Apennine population of L. petropolitana displays a single widespread COI haplotype also occurring in most European populations. In the Alps and Apennines, this species has shifted uphill an average of 6.3 m per year since 1964. Accordingly, our model predicted a likely extinction in the Apennines by about 2060, due to a reduction of the climatic suitability in this region. Implications for insect conservation Implications for insect conservation Despite its potential loss in the Apennines would not erode mitochondrial diversity, L. petropolitana characterises the butterfly community of the Gran Sasso massif as an alpine enclave. The loss of the Apennine population, together with those of other orophilous butterflies, could trigger a homogenization of alpha and beta diversity and induce a loss of functional diversity in the impoverished high-altitude biotas. As habitat heterogeneity is a key aspect for populations to endure climate change, the maintenance of varied microhabitats, mainly through grazing management, could address the decline of this population.Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE Agreement. This study was funded by the Ministero Italiano della Transizione Ecologica within the project “Ricerca e conservazione sui lepidotteri diurni di sei Parchi Nazionali dell’Appennino Centro-Settentrionale”. Support was also provided by the Academy of Finland (Academy Research Fellow, decision no. 328895) to VD. RV is supported by Grant PID2019-107078 GB-I00 funded by Ministerio de Ciencia e Innovación and Agencia Estatal de Investigació

    Genomics Reveal Admixture and Unexpected Patterns of Diversity in a Parapatric Pair of Butterflies

    Get PDF
    We studied the evolutionary relationship of two widely distributed parapatric butterfly species, Melitaea athalia and Melitaea celadussa, using the ddRAD sequencing approach, as well as genital morphology and mtDNA data. M. athalia was retrieved as paraphyletic with respect to M. celadussa. Several cases of mito-nuclear discordance and morpho-genetic mismatch were found in the contact zone. A strongly diverged and marginally sympatric clade of M. athalia from the Balkans was revealed. An in-depth analysis of genomic structure detected high levels of admixture between M. athalia and M. celadussa at the contact zone, though not reaching the Balkan clade. The demographic modelling of populations supported the intermediate genetic make-up of European M. athalia populations with regards to M. celadussa and the Balkan clade. However, the dissimilarity matrix of genotype data (PCoA) suggested the Balkan lineage having a genetic component that is unrelated to the athalia-celadussa group. Although narrowly sympatric, almost no signs of gene flow were found between the main M. athalia group and the Balkan clade. We propose two possible scenarios on the historical evolution of our model taxa and the role of the last glacial maximum in shaping their current distribution. Finally, we discuss the complexities regarding the taxonomic delimitation of parapatric taxa

    Genomics Reveal Admixture and Unexpected Patterns of Diversity in a Parapatric Pair of Butterflies

    Get PDF
    We studied the evolutionary relationship of two widely distributed parapatric butterfly species, Melitaea athalia and Melitaea celadussa, using the ddRAD sequencing approach, as well as genital morphology and mtDNA data. M. athalia was retrieved as paraphyletic with respect to M. celadussa. Several cases of mito-nuclear discordance and morpho-genetic mismatch were found in the contact zone. A strongly diverged and marginally sympatric clade of M. athalia from the Balkans was revealed. An in-depth analysis of genomic structure detected high levels of admixture between M. athalia and M. celadussa at the contact zone, though not reaching the Balkan clade. The demographic modelling of populations supported the intermediate genetic make-up of European M. athalia populations with regards to M. celadussa and the Balkan clade. However, the dissimilarity matrix of genotype data (PCoA) suggested the Balkan lineage having a genetic component that is unrelated to the athalia-celadussa group. Although narrowly sympatric, almost no signs of gene flow were found between the main M. athalia group and the Balkan clade. We propose two possible scenarios on the historical evolution of our model taxa and the role of the last glacial maximum in shaping their current distribution. Finally, we discuss the complexities regarding the taxonomic delimitation of parapatric taxa

    More hidden diversity in a cryptic species complex: a new subspecies of Leptidea sinapis (Lepidoptera, Pieridae) from Northern Iran

    Get PDF
    A new subspecies of Leptidea sinapis from Northern Iran, discovered by means of DNA barcoding, is described as Leptidea sinapis tabarestana ssp. nov. The new subspecies is allopatric with respect to other populations of L. sinapis and is genetically distinct, appearing as a well-supported sister clade to all other populations in COI-based phylogenetic reconstructions. Details on karyotype, genitalia, ecology and behaviour for the new subspecies are given and a biogeographical speciation scenario is proposed

    A macroevolutionary role for chromosomal fusion and fission in Erebia butterflies.

    Get PDF
    The impact of large-scale chromosomal rearrangements, such as fusions and fissions, on speciation is a long-standing conundrum. We assessed whether bursts of change in chromosome numbers resulting from chromosomal fusion or fission are related to increased speciation rates in Erebia, one of the most species-rich and karyotypically variable butterfly groups. We established a genome-based phylogeny and used state-dependent birth-death models to infer trajectories of karyotype evolution. We demonstrated that rates of anagenetic chromosomal changes (i.e., along phylogenetic branches) exceed cladogenetic changes (i.e., at speciation events), but, when cladogenetic changes occur, they are mostly associated with chromosomal fissions rather than fusions. We found that the relative importance of fusion and fission differs among Erebia clades of different ages and that especially in younger, more karyotypically diverse clades, speciation is more frequently associated with cladogenetic chromosomal changes. Overall, our results imply that chromosomal fusions and fissions have contrasting macroevolutionary roles and that large-scale chromosomal rearrangements are associated with bursts of species diversification

    The atlas of mitochondrial genetic diversity for Western Palaearctic butterflies

    Get PDF
    Motivation Butterflies represent a model in biology and a flagship group for invertebrate conservation. We provide four new resources for the Western Palaearctic butterflies: (1) an updated checklist comprising 552 species; (2) a curated dataset of 32,126 mitochondrial cytochrome c oxidase subunit I (COI) sequences for 532 species, including a de novo reference library for the Maghreb (Morocco, northern Algeria and Tunisia) and Macaronesia (Azores, Madeira and Canary Islands); (3) seven indexes of intraspecific genetic variation (IGV): observed and expected number of haplotypes, haplotype and nucleotide diversity, two fixation indexes and maximum p-distance; and (4) species-level maps illustrating the distribution of COI variability and haplotype networks. The updated checklist will be fundamental for any application dealing with butterfly diversity in the Western Palaearctic. The IGV indexes provide measures for genetic polymorphism and spatial structure and represent proxies for dispersal capacity. These resources will facilitate comparative studies of macrogenetics, foster integrative taxonomy and aid conservation strategies. Main types of variables contained A complete species checklist in table format, 32,126 mitochondrial DNA barcodes provided with metadata (species membership, WGS84 coordinates and sequence length) and a book in PDF format, including the IGV atlas and indexes, are provided. Spatial location and grain The checklist encompasses Europe up to the Urals in the east, north Macaronesia (the Azores, Madeira and the Canary Islands) and the Maghreb (Morocco, northern Algeria and Tunisia). COI sequences have been retained in the geographical interval of -31.3 to 67.5° of longitude and 27.5 - 71.2° of latitude. Time period and grain COI sequences originate from studies published between 1998 and 2022 and from de novo sequencing of 2541 specimens done between 2007 and 2022. Major taxa and level of measurement Butterflies (Lepidoptera: Papilionoidea), analysed from individual to species level. Software format Data and functions to manage the dataset are provided in the iodatabase R package (https://github.com/leondap/iodatabase) and in Dryad (https://doi.org/10.5061/dryad.9w0vt4bjj).Support for this research was provided by the Academy of Finland (Academy Research Fellow, decision no. 328895) and by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (project no. 625997) to V.D., by “la Caixa” Foundation (ID 100010434) to M.M. (grant LCF/BQ/DR20/11790020), and by projects CGL2010-21226/BOS and CGL2013-48277-P (Spanish Ministerio de Economía y Competitividad), CGL2016-76322 (AEI/FEDER, UE), PID2019-107078GB-I00 (MCIN/AEI/10.13039/501100011033) and 2017-SGR-991 (Generalitat de Catalunya) to R.Vi., the grant BES-2017-080641 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future” to J.C.H., the project PID2020-117739GA-I00 (MCIN/AEI/10.13039/501100011033) to G.T., and by the Direttiva Biodiversità 2019 and 2020 projects (Ministero della Transizione Ecologica) to L.D.1 INTRODUCTION 2 METHODS 2.1 Checklists and geographical ranges 2.2 Data acquisition, curation and quality control 2.3 Indexes of genetic variation 2.4 Maps of genetic variation 2.5 Haplotype networks 2.6 Script availability 3 RESULTS AND DISCUSSION ACKNOWLEDGMENTS FUNDING INFORMATION CONFLICT OF INTEREST BIOSKETC
    corecore