47 research outputs found

    Effects of Nightshift Work on Blood Metabolites in Female Nurses and Paramedic Staff: A Cross-sectional Study

    Get PDF
    Nightshift work disturbs the circadian rhythm, which might contribute to the development of cardio-metabolic disorders. In this cross-sectional study, we aimed to gain insight into perturbations of disease relevant metabolic pathways due to nightshift work. We characterized the metabolic profiles of 237 female nurses and paramedic staff participating in the Klokwerk study using the Nightingale Health platform. We performed analyses on plasma levels of 225 metabolites, including cholesterol, triglycerides, fatty acids, and amino acids. Using both principal component- and univariate-regression, we compared metabolic profiles of nightshift workers to metabolic profiles from workers that did not work night shifts (defined as day workers). We also assessed whether differential effects were observed between recently started versus more experienced workers. Within the group of nightshift workers, we compared metabolic profiles measured right after a nightshift with metabolic profiles measured on a day when no nightshift work was conducted. We observed evidence for an impact of nightshift work on the presence of unfavorable fatty acid profiles in blood. Amongst the fatty acids, effects were most prominent for PUFA/FA ratios (consistently decreased) and SFA/FA ratios (consistently elevated). This pattern of less favorable fatty acid profiles was also observed in samples collected directly after a night shift. Amino acid levels (histidine, glutamine, isoleucine, and leucine) and lipoproteins (especially HDL-cholesterol, VLDL-cholesterol, and triglycerides) were elevated when comparing nightshift workers with day workers. Amino acid levels were decreased in the samples that were collected directly after working a nightshift (compared to levels in samples that were collected during a non-nightshift period). The observed effects were generally more pronounced in samples collected directly after the nightshift and among recently started compared to more experienced nightshift workers. Our finding of a suggested impact of shift work on impaired lipid metabolism is in line with evidence that links disruption of circadian rhythmicity to obesity and metabolic disorders

    Flexible Meta-Regression to Assess the Shape of the Benzene–Leukemia Exposure–Response Curve

    Get PDF
    Ba c k g r o u n d: Previous evaluations of the shape of the benzene–leukemia exposure–response curve (ERC) were based on a single set or on small sets of human occupational studies. Integrating evidence from all available studies that are of sufficient quality combined with flexible meta-regression models is likely to provide better insight into the functional relation between benzene exposure and risk of leukemia. Objectives: We used natural splines in a flexible meta-regression method to assess the shape of the benzene–leukemia ERC. Met h o d s: We fitted meta-regression models to 30 aggregated risk estimates extracted from nine human observational studies and performed sensitivity analyses to assess the impact of a priori assessed study characteristics on the predicted ERC. Re s u l t s: The natural spline showed a supralinear shape at cumulative exposures less than 100 ppmyears, although this model fitted the data only marginally better than a linear model (p = 0.06). Stratification based on study design and jackknifing indicated that the cohort studies had a considerable impact on the shape of the ERC at high exposure levels (> 100 ppm-years) but that predicted risks for the low exposure range (< 50 ppm-years) were robust. Co n c l u s i o n s: Although limited by the small number of studies and the large heterogeneity between studies, the inclusion of all studies of sufficient quality combined with a flexible meta-regression method provides the most comprehensive evaluation of the benzene–leukemia ERC to date. The natural spline based on all data indicates a significantly increased risk of leukemia [relative risk (RR) = 1.14; 95 % confidence interval (CI), 1.04–1.26] at an exposure level as low as 10 ppm-years. Key w o r d s: benzene, epidemiology, leukemia, meta-regression, quantitative risk assessment. Environ Health Perspect 118:526–532 (2010). doi:10.1289/ehp.0901127 available vi

    Impact of long-term exposure to PM2.5 on peripheral blood gene expression pathways involved in cell signaling and immune response

    Get PDF
    Background Exposure to ambient air pollution, even at low levels, is a major environmental health risk. The peripheral blood transcriptome provides a potential avenue for the elucidation of ambient air pollution related biological perturbations. We assessed the association between long-term estimates for seven priority air pollutants and perturbations in peripheral blood transcriptomics data collected in the Dutch National Twin Register (NTR) and Netherlands Study of Depression and Anxiety (NESDA) cohorts. Methods In both the discovery (n = 2438) and replication (n = 1567) cohort, outdoor concentration of 7 air pollutants (NO2, NOx, particulate matter (PM2.5, PM2.5abs, PM10, PMcoarse), and ultrafine particles) was predicted with land use regression models. Gene expression was assessed by Affymetrix U219 arrays. Multi-variable univariate mixed-effect models were applied to test for an association between the air pollutants and the transcriptome. Functional analysis was conducted in DAVID. Results In the discovery cohort, we observed for 335 genes (374 probes with FDR < 5 %) a perturbation in peripheral blood gene expression that was associated with long-term average levels of PM2.5. For 69 genes pooled effect estimates from the NTR and NESDA cohorts were significant. Identified genes play a role in biological pathways related to cell signaling and immune response. Sixty-two out of 69 genes had a similar direction of effect in an analysis in which we regressed the probes on differential PM2.5 exposure within monozygotic twin pairs, indicating that the observed differences in gene expression were likely driven by differences in air pollution, rather than by confounding by genetic factors. Conclusion Our results indicate that PM2.5 can elicit a response in cell signaling and the immune system, both hallmarks of environmental diseases. The differential effect that we observed between air pollutants may aid in the understanding of differential health effects that have been observed with these exposures

    A systematic comparison of linear regression-based statistical methods to assess exposome-health associations

    No full text
    BACKGROUND: The exposome constitutes a promising framework to better understand the effect of environmental exposures on health by explicitly considering multiple testing and avoiding selective reporting. However, exposome studies are challenged by the simultaneous consideration of many correlated exposures. OBJECTIVES: We compared the performances of linear regression-based statistical methods in assessing exposome-health associations. METHODS: In a simulation study, we generated 237 exposure covariates with a realistic correlation structure, and a health outcome linearly related to 0 to 25 of these covariates. Statistical methods were compared primarily in terms of false discovery proportion (FDP) and sensitivity. RESULTS: On average over all simulation settings, the elastic net and sparse partial least-squares regression showed a sensitivity of 76% and a FDP of 44%; Graphical Unit Evolutionary Stochastic Search (GUESS) and the deletion/substitution/addition (DSA) algorithm a sensitivity of 80% and a FDP of 33%. The environment-wide association study (EWAS) underperformed these methods in terms of FDP (average FDP, 86%), despite a higher sensitivity. Performances decreased considerably when assuming an exposome exposure matrix with high levels of correlation between covariates. CONCLUSIONS: Correlation between exposures is a challenge for exposome research, and the statistical methods investigated in this study are limited in their ability to efficiently differentiate true predictors from correlated covariates in a realistic exposome context. While GUESS and DSA provided a marginally better balance between sensitivity and FDP, they did not outperform the other multivariate methods across all scenarios and properties examined, and computational complexity and flexibility should also be considered when choosing between these methods

    Environmental risk factors of type 2 diabetes-an exposome approach

    Get PDF
    Type 2 diabetes is one of the major chronic diseases accounting for a substantial proportion of disease burden in Western countries. The majority of the burden of type 2 diabetes is attributed to environmental risks and modifiable risk factors such as lifestyle. The environment we live in, and changes to it, can thus contribute substantially to the prevention of type 2 diabetes at a population level. The ‘exposome’ represents the (measurable) totality of environmental, i.e. nongenetic, drivers of health and disease. The external exposome comprises aspects of the built environment, the social environment, the physico-chemical environment and the lifestyle/food environment. The internal exposome comprises measurements at the epigenetic, transcript, proteome, microbiome or metabolome level to study either the exposures directly, the imprints these exposures leave in the biological system, the potential of the body to combat environmental insults and/or the biology itself. In this review, we describe the evidence for environmental risk factors of type 2 diabetes, focusing on both the general external exposome and imprints of this on the internal exposome. Studies provided established associations of air pollution, residential noise and area-level socioeconomic deprivation with an increased risk of type 2 diabetes, while neighbourhood walkability and green space are consistently associated with a reduced risk of type 2 diabetes. There is little or inconsistent evidence on the contribution of the food environment, other aspects of the social environment and outdoor temperature. These environmental factors are thought to affect type 2 diabetes risk mainly through mechanisms incorporating lifestyle factors such as physical activity or diet, the microbiome, inflammation or chronic stress. To further assess causality of these associations, future studies should focus on investigating the longitudinal effects of our environment (and changes to it) in relation to type 2 diabetes risk and whether these associations are explained by these proposed mechanisms. Graphical abstract: [Figure not available: see fulltext.

    Variability of the Human Serum Metabolome over 3 Months in the EXPOsOMICS Personal Exposure Monitoring Study

    Get PDF
    Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) and untargeted metabolomics are increasingly used in exposome studies to study the interactions between nongenetic factors and the blood metabolome. To reliably and efficiently link detected compounds to exposures and health phenotypes in such studies, it is important to understand the variability in metabolome measures. We assessed the within- and between-subject variability of untargeted LC-HRMS measurements in 298 nonfasting human serum samples collected on two occasions from 157 subjects. Samples were collected ca. 107 (IQR: 34) days apart as part of the multicenter EXPOsOMICS Personal Exposure Monitoring study. In total, 4294 metabolic features were detected, and 184 unique compounds could be identified with high confidence. The median intraclass correlation coefficient (ICC) across all metabolic features was 0.51 (IQR: 0.29) and 0.64 (IQR: 0.25) for the 184 uniquely identified compounds. For this group, the median ICC marginally changed (0.63) when we included common confounders (age, sex, and body mass index) in the regression model. When grouping compounds by compound class, the ICC was largest among glycerophospholipids (median ICC 0.70) and steroids (0.67), and lowest for amino acids (0.61) and the O-acylcarnitine class (0.44). ICCs varied substantially within chemical classes. Our results suggest that the metabolome as measured with untargeted LC-HRMS is fairly stable (ICC > 0.5) over 100 days for more than half of the features monitored in our study, to reflect average levels across this time period. Variance across the metabolome will result in differential measurement error across the metabolome, which needs to be considered in the interpretation of metabolome results

    Land Use Regression Models for Ultrafine Particles in Six European Areas

    Get PDF
    Long-term ultrafine particle (UFP) exposure estimates at a fine spatial scale are needed for epidemiological studies. Land use regression (LUR) models were developed and evaluated for six European areas based on repeated 30 min monitoring following standardized protocols. In each area; Basel (Switzerland), Heraklion (Greece), Amsterdam, Maastricht, and Utrecht ("The Netherlands"), Norwich (United Kingdom), Sabadell (Spain), and Turin (Italy), 160-240 sites were monitored to develop LUR models by supervised stepwise selection of GIS predictors. For each area and all areas combined, 10 models were developed in stratified random selections of 90% of sites. UFP prediction robustness was evaluated with the intraclass correlation coefficient (ICC) at 31-50 external sites per area. Models from Basel and The Netherlands were validated against repeated 24 h outdoor measurements. Structure and model R2 of local models were similar within, but varied between areas (e.g., 38-43% Turin; 25-31% Sabadell). Robustness of predictions within areas was high (ICC 0.73-0.98). External validation R2 was 53% in Basel and 50% in The Netherlands. Combined area models were robust (ICC 0.93-1.00) and explained UFP variation almost equally well as local models. In conclusion, robust UFP LUR models could be developed on short-term monitoring, explaining around 50% of spatial variance in longer-term measurements

    A systematic comparison of statistical methods to detect interactions in exposome-health associations

    Get PDF
    Background There is growing interest in examining the simultaneous effects of multiple exposures and, more generally, the effects of mixtures of exposures, as part of the exposome concept (being defined as the totality of human environmental exposures from conception onwards). Uncovering such combined effects is challenging owing to the large number of exposures, several of them being highly correlated. We performed a simulation study in an exposome context to compare the performance of several statistical methods that have been proposed to detect statistical interactions. Methods Simulations were based on an exposome including 237 exposures with a realistic correlation structure. We considered several statistical regression-based methods, including two-step Environment-Wide Association Study (EWAS2), the Deletion/Substitution/Addition (DSA) algorithm, the Least Absolute Shrinkage and Selection Operator (LASSO), Group-Lasso INTERaction-NET (GLINTERNET), a three-step method based on regression trees and finally Boosted Regression Trees (BRT). We assessed the performance of each method in terms of model size, predictive ability, sensitivity and false discovery rate. Results GLINTERNET and DSA had better overall performance than the other methods, with GLINTERNET having better properties in terms of selecting the true predictors (sensitivity) and of predictive ability, while DSA had a lower number of false positives. In terms of ability to capture interaction terms, GLINTERNET and DSA had again the best performances, with the same trade-off between sensitivity and false discovery proportion. When GLINTERNET and DSA failed to select an exposure truly associated with the outcome, they tended to select a highly correlated one. When interactions were not present in the data, using variable selection methods that allowed for interactions had only slight costs in performance compared to methods that only searched for main effects. Conclusions GLINTERNET and DSA provided better performance in detecting two-way interactions, compared to other existing methods

    The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

    Get PDF
    Background: The NORMAN Association (https://www.norman-.network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-.network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https:// zenodo.org/communities/norman-.sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox. epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-.network.com/nds/SLE/)

    From science to policy: How European HBM indicators help to answer policy questions related to phthalates and DINCH exposure

    Get PDF
    Within the European Human Biomonitoring (HBM) Initiative HBM4EU we derived HBM indicators that were designed to help answering key policy questions and support chemical policies. The result indicators convey information on chemicals exposure of different age groups, sexes, geographical regions and time points by comparing median exposure values. If differences are observed for one group or the other, policy measures or risk management options can be implemented. Impact indicators support health risk assessment by comparing exposure values with health-based guidance values, such as human biomonitoring guidance values (HBM-GVs). In general, the indicators should be designed to translate complex scientific information into short and clear messages and make it accessible to policy makers but also to a broader audience such as stakeholders (e.g. NGO's), other scientists and the general public. Based on harmonized data from the HBM4EU Aligned Studies (2014-2021), the usefulness of our indicators was demonstrated for the age group children (6-11 years), using two case examples: one phthalate (Diisobutyl phthalate: DiBP) and one non-phthalate substitute (Di-isononyl cyclohexane-1,2- dicarboxylate: DINCH). For the comparison of age groups, these were compared to data for teenagers (12-18 years), and time periods were compared using data from the DEMOCOPHES project (2011-2012). Our result indicators proved to be suitable for demonstrating the effectiveness of policy measures for DiBP and the need of continuous monitoring for DINCH. They showed similar exposure for boys and girls, indicating that there is no need for gender focused interventions and/or no indication of sex-specific exposure patterns. They created a basis for a targeted approach by highlighting relevant geographical differences in internal exposure. An adequate data basis is essential for revealing differences for all indicators. This was particularly evident in our studies on the indicators on age differences. The impact indicator revealed that health risks based on exposure to DiBP cannot be excluded. This is an indication or flag for risk managers and policy makers that exposure to DiBP still is a relevant health issue. HBM indicators derived within HBM4EU are a valuable and important complement to existing indicator lists in the context of environment and health. Their applicability, current shortcomings and solution strategies are outlined
    corecore