387 research outputs found

    Biohydrogen from microalgae: Production and applications

    Get PDF
    The need to safeguard our planet by reducing carbon dioxide emissions has led to a significant development of research in the field of alternative energy sources. Hydrogen has proved to be the most promising molecule, as a fuel, due to its low environmental impact. Even if various methods already exist for producing hydrogen, most of them are not sustainable. Thus, research focuses on the biological sector, studying microalgae, and other microorganisms’ ability to produce this precious molecule in a natural way. In this review, we provide a description of the biochemical and molecular processes for the production of biohydrogen and give a general overview of one of the most interesting technologies in which hydrogen finds application for electricity production: fuel cells

    Valve Type and Operative Risks in Surgical Explantation of Transcatheter Aortic Valves: A Systematic Review and Meta-Analysis

    Get PDF
    Indication to perform surgical explantation of TAVR is becoming increasingly more frequent, due to the higher number of transcatheter procedures performed in patients with longer life expectancy. We proposed to perform a systematic review and meta-analysis with metaregression to identify potential factors that can determine an increase in the high mortality and morbidity that characterize these surgical procedures. MEDLINE and Embase were searched for relevant studies. Twelve studies were eligible according to our inclusion criteria. TAVR explantation was confirmed as a procedure with high 30-day mortality (0.17; 95% CI, 0.14–0.21) and morbidity (stroke incidence 5%; 95% CI, 0.04–0.07; kidney injury incidence 16%; 95% CI, 0.11–0.24). The type of transcatheter valve implanted during the index procedure did not influence the outcomes after surgical explantation. The role of these high-risk operations is growing, and it will likely expand in the coming years. Specific tools for risk stratification are required

    The Sardinia Space Communication Asset: Performance of the Sardinia Deep Space Antenna X-Band Downlink Capability

    Get PDF
    The Sardinia deep space antenna (SDSA), managed by the Italian Space Agency (ASI) has started its operations in 2017 aiming to provide tracking and communication services for deep space, near earth, and lunar missions, and to support new and challenging radio science experiments. The SDSA shares with the Sardinia Radio Telescope (SRT) a part of the system and infrastructure, but has its own specific equipment and a dedicated control center. The current SDSA capabilities involve the X-band (8.4 GHz-8.5 GHz) reception of telemetry from deep space probes within interplanetary missions. In this work we describe the development and performance of the X-band receiving system. It was designed and assembled with the cooperation of both the NASA-Jet Propulsion Laboratory (JPL) and the European Space Agency (ESA). Specifically, NASA-JPL provided the X-band feed and the cryogenic receiver installed in a suitable focus of the SRT devoted to space applications, and ESA provided the intermediate frequency modem system (IFMS) for signal processing. The coupling of the X-band feed with the parabolic reflector of the SRT and the radiating features of the SDSA have been evaluated with simulations performed using CST Studio Suite and GRASP by Ticra. The telecommunication performance of the system has been assessed by measurements and experiments showing a good agreement between estimates and simulations

    Chemical characterization of biomass fuel particulate deposits and ashes in households of Mt. Everest region (NEPAL)

    Get PDF
    During a sampling campaign, carried out during June 2012, inside some traditional households located in four villages (Phakding, Namche, Pangboche and Tukla) of Mt. Everest region in southern part of the central Himalaya (Nepal), particulate matter (PM) depositions and ashes have been collected. Moreover, outdoor PM depositions have also been analyzed. Chemical characterization of PM depositions and ashes for major ions, organic carbon, elemental carbon (EC), metal content and PAHs (Polycyclic Aromatic Hydrocarbons) allowed identifying, as major contributes to indoor PM, the following sources: biomass burning, cooking and chimney ashes. These sources significantly affect outdoor PM depositions: in-house biomass burning is the major source for outdoor EC and K+ as well as biomass burning and cooking activities are the major sources for Polycyclic Aromatic Hydrocarbons

    Intensive monitoring of conventional and surrogate quality parameters in a highly urbanized river affected by multiple combined sewer overflows

    Get PDF
    Abstract The paper reports results of four intensive campaigns carried out on the Seveso River (Milan metropolitan area, Italy) between 2014 and 2016, during intense precipitation events. Laboratory analyses were coupled with on-site, continuous measurements to assess the impact of pollutants on water quality based on both conventional and surrogate parameters. Laboratory data included total suspended solids, caffeine, total phosphorus and nitrogen, and their dissolved forms. Screening of trace metals (Cr, Cu, Pb, Ni, Cd) and PBDEs (polybromodiphenylethers) was carried out. Continuous measurements included water level, physico-chemical variables and turbidity. Nutrient concentrations were generally high (e.g. average total phosphorus > 1,000 μg/L) indicating strong sewage contributions. Among monitored pollutants Cr, Cu, Pb, and Cd concentrations were well correlated to TSS, turbidity and discharge, being bound mostly to suspended particulate matter. A different behavior was found for Ni, that showed an early peak occurring before the flow peak, as a result of first flush events. PBDEs correlated well to nutrient concentrations, showing the highest peaks soon after activation of the combined sewer overflows, likely because of its accumulation in sewers. In addition to showing the existing correlations between quality parameters, the paper highlights the importance of surrogate parameters as indicators of anthropic pollution inputs

    Straightforward, Metal-free, and Stereoselective Synthesis of 9-Oxo- and 10-Hydroxy-2(E)-decenoic acids, Important Components of Honeybee (Apis mellifera) secretions

    Get PDF
    10-Hydroxy-2E-decenoic (10-HDA) and 9-oxo-2E-decenoic (9-ODA) acids, two components identified in honeybee secretions, have both received considerable recent interest due to their involvement in caste switch and maintenance. Herein we report for the first time a metal-free, gram scale, and stereoselective synthesis of these honeybee secretion components by TEMPO catalyzed oxidation of readily available alcohols and subsequent Doebner–Knoevenagel reactions between the resulting aldehydes and malonic acid. Mechanistic investigations undertaken highlighted the crucial role of the Doebner–Knoevenagel reaction in the high yielding and selective preparation of the α,β-unsaturated acids 10-HDA and 9-ODA. The combination of inexpensive and environmentally friendly reagents with simple synthetic procedures renders this approach a valuable green strategy for the gram scale preparation of these biologically relevant natural molecules

    Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-β-dependent mechanisms

    Get PDF
    ACKNOWLEDGMENTS. We thank Phillip B. Murray for help with the shRNA mapping pipeline and Francesc Lopez-Giraldez for help with RNAseq mapping software.Peer reviewedPostprintPostprin
    corecore