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household stoves of four villages of a high elevated Central Himalayan region has been obtained. Indoor deposits and 

ashes compositions have been compared with corresponding outdoor deposits. Chemical characterization on the 

samples collected in this study suggested that biomass burning in house  heating and cooking activities are relevant 

source affecting significantly particulate outdoor  depositions. In fact we found that OC is the more abundant 

component of indoor particles; moreover OC average indoor concentration is more of double of the OC  average 

outdoor one. Among analyzed cations, K+ and Ca2+ were the more abundant ones in the indoor and ash samples.  K+ and 

Ca2+  average indoor and ash concentrations were more than three times of K+ and Ca2+  average outdoor ones. Among 

compounds forming OC, phase particulate PAHs associated to cooking activities and biomass burning have relevant 

concentrations in indoor samples: average indoor concentration of chrysene is significantly  higher than outdoor and 

ashes samples. 
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In the following you can find five potential reviewers for the manuscript: 

 
1) Professor Imre Salma 

Eötvös University, Institute of Chemistry 
Phone (direct): +36 1 372-26-15 
E-mail:         salma@chem.elte.hu 
 

2) Dr. Mauro Francesco La Russa 
Department of Biology, Ecology and Earth Sciences, 
University of Calabria  
E-mail:         mlarussa@unical.it 
 
 

3) Dr Stefania Gilardoni 
Institute of Atmospheric sciences and climate  - Italian National Research Council 
s.gilardoni@isac.cnr.it 
 

4)  Pillarisetti, Ajay 
ajaypillarisetti@gmail.com 
University of California, United States 
 

5) Roden, Christoph A. 
croden@uiuc.edu 

Cover Letter



University of Illinois at Urbana-Champaign, United States  
 
 
 
Unwanted reviewer: 
1) Dr. Paolo Bonasoni 
Italian National Reserch Council, Institute and Atmospheric Sciences and Climate 
p.bonasoni@isac.cnr.it 
 
 
2) Dr. Daniele Contini 

Italian National Reserch Council, Institute and Atmospheric Sciences and Climate 
d.contini@isac.cnr.it 
  
 

 
 

We hope the copy of our manuscript is suitable for a publication on your Journal, for this reason we are ready to accept 
some suggestions or modifications from your selected referees. I already obtained the authorizations of other authors to 
sign this document. 

Lecce 10/06/2016         corresponding author* 
                 Dr. Pierina Ielpo 

 

 

 

 

 

*E-mail: piera.ielpo@ba.irsa.cnr.it	



*Graphical Abstract



Highlights:  

OC, EC, PAHs, elements, anions and cations quantitatively analysed in particulate deposits and ashes collected in the 

Mt Everest region. 

Indoor particulate deposits composition compared with outdoor particulate deposits one. 

The OC average indoor concentration is more of double of the OC average outdoor one. 

In indoor and ash samples PAH concentrations were higher than the outdoor ones, suggesting that the main source of 

PAHs in outdoor deposits is the biomass combustion. 

Biomass burning is the largest contributor of K
+
 to atmosphere particulate matter. 

. 

 

*Highlights (for review)



1 
 

Chemical characterization of biomass fuel particulate deposits and ashes in 1 

households of Mt Everest region (NEPAL) 2 

Pierina Ielpo
a,b,*

, Paola Fermo
 c
, Valeria Comite

 c
, Domenico Mastroianni

 d
, Gaetano Viviano

 e
, Franco Salerno

 e
, Gianni 3 

Tartari
 e
 4 

a
Water Research Institute, National Research Council, via F. de Blasio 5, 70132 Bari, Italy 5 

b
Institute of Atmospheric Sciences and Climate, National Research Council, s.p. Lecce-Monteroni km 1,2 73100, 6 

Lecce, Italy 7 
c
Department of Chemistry, University of Milan, via Golgi 19, 20133, Milan, Italy 8 

d
Water Research Institute, National Research Council, Via Salaria km 29,300 - C.P. 10 9 

00015 Monterotondo St. (RM), Italy 10 
e
Water Research Institute, National Research Council, via del Mulino 19, 20861 Brugherio, Italy 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

* 
corresponding author: Pierina Ielpo 26 

E-mail: piera.ielpo@ba.irsa.cnr.it 27 

Phone number: 00390832298715 28 

Fax number: 00390832298716 29 

 30 

*Manuscript
Click here to view linked References

mailto:piera.ielpo@ba.irsa.cnr.it
http://ees.elsevier.com/stoten/viewRCResults.aspx?pdf=1&docID=48563&rev=0&fileID=1057926&msid={81A2224B-B934-4C9B-B21F-919E202A6767}


2 
 

Abstract 31 

During a sampling campaign, carried out during June 2012, inside some traditional households located in four 32 
villages (Phakding, Namche, Pangboche and Tukla) of Mt. Everest region in southern part of the central Himalaya 33 
(Nepal), particulate matter (PM) depositions and ashes have been collected. Moreover, outdoor PM depositions have 34 
also been analysed. Chemical characterization of PM depositions and ashes for major ions, organic carbon, elemental 35 
carbon (EC), metal content and PAHs (Polycyclic Aromatic Hydrocarbons) allowed identifying, as major contributes to 36 
indoor PM, the following sources: biomass burning, cooking and chimney ashes. These sources significantly affect 37 
outdoor PM depositions: in-house biomass burning is the major source for outdoor EC and K

+
 as well as biomass 38 

burning and cooking activities are the major sources for Polycyclic Aromatic Hydrocarbons.  39 

 40 

 41 

Highlights:  42 

OC, EC, PAHs, elements, anions and cations quantitatively analysed in particulate deposits and ashes collected in the 43 

Mt Everest region. 44 

Indoor particulate deposits composition compared with outdoor particulate deposits one. 45 

The OC average indoor concentration is more of double of the OC average outdoor one. 46 

In indoor and ash samples PAH concentrations were higher than the outdoor ones, suggesting that the main source of 47 

PAHs in outdoor deposits is the biomass combustion. 48 

Biomass burning is the largest contributor of K
+
 to atmosphere particulate matter. 49 

Keywords: PM indoor, ash, remote area, PAHs, metals 50 

*Corresponding author 51 

E mail address: piera.ielpo@ba.irsa.cnr.it (P.Ielpo) 52 

1. Introduction 53 

Indoor air pollution is a major cause of ill health in developing countries. In some regions it is mostly due to the burning 54 

of biomass fuel, particularly wood, dung, straw, and charcoal (“solid fuels”), used as a source of heat and light 55 

(Rehfuess, 2006; Fullerton et al., 2008; Salerno et al., 2010b; Gurung and Bell, 2013). Because of incomplete 56 

combustion of biomass fuels, indoor air concentrations of PM10 can be up to 10000 μg/m
3
 during cooking (Rehfuess, 57 

2006). 58 

Globally, solid fuel use is estimated to cause 3.5 million premature deaths per year, around one million of which are 59 

attributed to acute respiratory infections in young children (Stevens, 2009; Lim et al., 2012; Murray et al., 2012). There 60 

is also strong evidence of linking of solid fuel use with chronic obstructive pulmonary disease (Kurmi et al., 2010), 61 

pneumonia in children under 5 (Dherani et al., 2008), lung cancer (Kurmi et al., 2012), and tuberculosis (Sumpter and 62 

Chandramohan, 2013). There is also weaker evidence for a link with low birthweight (Pope et al., 2010, Shah and 63 

Balkhair, 2011), anemia and stunting (Rehfuess, 2006; Fullerton et al., 2008). Air pollution affects also cardiovascular 64 

systems (Murray and Lopez, 1996; Nishtar, 2002; Lim et al., 2012; Yamamoto et a., 2014). Lack of research on 65 

exposure to air pollution and human health burden, despite poor air quality, is a situation common in many countries. 66 

Nepal is one of these (Shrestha and Shrestha, 2005). In the review of Gurung and Bell (2013), it’s been shown as Nepal 67 

is observed to have research gaps that include understanding chronic effects of air pollution exposure, risk associated 68 
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with pollution mixture such as constituents of PM and vulnerability of sub-population. A recent study (Bruno et al, 69 

2013) has shown as in rural Nepalese high altitude dwellers, using biomass fuels, absence of chimney in the stoves is 70 

associated with selective impairment of condult-artery endothelial function. It has been observed that replacing 71 

traditional stoves with improved stoves in rural house-holds led to decrease in total suspended particles, carbon 72 

monoxide, and PM2.5 (Reid et al.,1986; NPHO, 2008;.) 73 

In addition to the health effects, particulate matter resulting from incomplete combustion of biomass and fossil fuel 74 

containing high level of black carbon (BC), affects climate forcing. In South Asia, BC emission from residential 75 

biofuels cooking is the largest source of atmospheric BC concentrations (Venkataraman et al., 2005; Bond et al., 2007; 76 

Gustafsson et al., 2009). The high levels of biomass BC emissions can significantly affect climate forcing from local to 77 

global scales (Forster et al., 2007; Ramanathan and Carmichael, 2008). Furthermore BC is estimated to contribute to the 78 

disruption of the monsoon in South Asia (Ramanathan et al., 2001, 2005; Lau et al., 2008) as well as East Asia (Menon 79 

et al., 2002) and heating of the elevated regions of the Himalayan-Tibetan region (Ramanathan et al., 2007; Flanner et 80 

al., 2009; Menon et al., 2010). Although the importance of biomass burning in the Himalayan region is well recognized, 81 

precise data are lacking and only recently efforts have been made to assess the contribution of this source to aerosol 82 

(Vadrevu et al., 2012). Other studies carried out at Askole, Pakistan Northern Areas, highlighted as domestic 83 

combustion from the nearby village of Askole could represent a possible source of short lasting pollution events with 84 

high aerosol concentration (Putero et al., 2014). 85 

The aim of the present study is a preliminary chemical characterization of particulate matter (PM) generated indoor 86 

from the combustion of different fuels used in traditional stoves and assessing how this source can affects outdoor PM 87 

composition. For this purpose, a sampling campaign has been carried out during June 2012 in order to collect PM 88 

depositions and ashes inside traditional homes of the southern slopes of Mt Everest (Nepal). Currently, no information 89 

about chemical characterization of PM indoor exists in the high elevated Central Himalayan region where the 90 

remoteness and the harsh conditions of the region have complicated and obstructed monitoring and sampling. 91 

2. Region of investigation 92 

The current study is focused on the Mt. Everest region, and in particular on the Sagarmatha National Park (SNP) and 93 

the Buffer Zone (BZ) (27.75° to 28.11° N; 85.98° to 86.51° E) that lies in eastern Nepal, in the southern part of the 94 

central Himalaya (Fig. 1) (Thakuri et al., 2014). The SNPBZ is the world’s highest protected area, visited by over 95 

30,000 tourists in 2008 (Salerno et al., 2010a; Salerno et al., 2013). The park area (1148 km
2
), extending from an 96 

elevation of 2845 to 8848 m a.s.l. (i.e., Mt. Everest), covers the upper Dudh Koshi Basin (Manfredi et al., 2010; Amatya 97 

et al., 2010), presents a broad range of bioclimatic conditions (UNEP and WCMC, 2008) and its climate is 98 

characterized by the monsoon system, with a prevailing direction S-N and SW-NE (e.g., Salerno et al., 2015). 99 

It is worth noting that in this area campaigns based on the use of conventional PM sampling systems are made difficult 100 

by the extreme conditions (difficulties of transport and samplers management, lack of electricity etc.) 101 

During June 2012,  as already followed in four reference villages lying in a remote valley located in the northeast India 102 

(Deka and Hoque, 2015) particulate matter depositions (powder deposits) and ashes were collected inside traditional 103 

lodges in four reference villages (Phakding, Namche, Pangboche and Tukla) located in the Khumbu Valley along an 104 
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Phak IN 1 Indoor Inside the chimney 

Phak IN 2 Indoor
Kitchen shelf (close to 

the fireplace) 

Phak IN 3 Indoor
Kitchen shelf (close to 

the fireplace) 

Phak OUT Outdoor Roof external shelf

Phak ASH Ash
Fuels used: oak, pine, 

rhododendron 

Nam IN 1 Indoor
Kitchen shelf (far from 

the fireplace)

Nam IN 2 Indoor
Kitchen shelf (close to 

the fireplace) 

Nam IN 3 Indoor On the fireplace

Nam OUT Outdoor Lodge roof 

Nam ASH Ash
Fuels used: pine and 

juniper 

Pang IN 1 Indoor Fireplace base

Pang IN 2 Indoor
Kitchen shelf (far from 

the fireplace)

Pang OUT Outdoor Lodge roof

Pang ASH Ash
Fuels used: Yak dun, 

wood and kerosene

Tukla IN 1 Indoor
Kitchen shelf (close to 

the fireplace) 

Tukla IN 2 Indoor
Kitchen shelf (far from 

the fireplace)

Tukla OUT Outdoor Window external shelf 

Tukla ASH  Ash
Fuels used: bushes and 

Kerosene 

Pangboche
Kerosene, Yak 

dung

Tukla
Kerosene, Yak 

dung

Phakding
Wood  (mainly 

Conifers)

Namche
Wood  (mainly 

Conifers)

Sample code
Sample 

type
Sampling details

Sampling 

village
Fuel

altitudinal gradient ranging from 2610 to 4600 m a.s.l. (Fig. 1). Figure 1 describes in details sampling locations, code 105 

and features of each sample including the fuel used. 106 

 107 

 108 

 109 

 110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 

 118 

Fig. 1. a) On the left, the map of the Sagarmatha National Park and Buffer Zone (SNPBZ) with topographic information 119 

and the four monitored villages. On the right, details on sampling sites. 120 

As described by Salerno et al., 2010b, fuelwood from forests remains one of the major energy sources in SNPBZ, 121 

constituting 30% of all energy use. Kerosene is the most common energy source (33%), and dung (19%) and liquefied 122 

petroleum gas (LPG; 7.5%) are used less often. Energy is mainly used for activities such as cooking, boiling water, 123 

space heating, and lighting. Kitchens of most private houses in SNPBZ are equipped mainly with open fireplaces for 124 

cooking (and heating in winter), known as traditional cooking stoves. Due to the lack of suitable ventilation systems 125 

(chimney or other fume outlet), these facilities emit fumes directly into the kitchen area. 126 

3. Materials and Methods 127 

3.1 Sampling methods  128 

It is well known that PM is generally collected using specific pumping low or high volume devices, but logistic aspects 129 

and lack of local electricity sources in this research activity did not allow to use these conventional samplers. As already 130 

followed in other remote or rural environments (Deka and Hoque, 2015), the sampling method used in the present study 131 

considered the collection of the PM powders without pumping. In particular, we collected indoor PM by means of a 132 

brush (for example in the case of the powder taken from the kitchen shelfs) or using a spoon (as in the case of the ash). 133 

PM outdoor samples have been obtained collecting from several zones of the lodge roof (or window shelf) particulate 134 

deposits by a little spatula. For each sampling site, one integrated outdoor sample has been obtained and the chemical 135 
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concentrations shown are the results on three replicates analyses on it.  Also in the case of ash samples, one integrated 136 

ash sample per site has been obtained. For each village, a lodge equipped with traditional stoves has been selected. Each 137 

reference site has been characterized sampling the fuel ash, the indoor depositions in two or three places, and the 138 

outdoor deposition (Fig. 1). We considered the ashes and deposited dusts as chemical-physical composition assimilated 139 

to the inhalable fraction of particulate matter one. 140 

 141 

3.2 Chemical characterization 142 

PM and ash samples have been characterized from the chemical point of view as concerns major ions (Na
+
, NH4

+
, K

+
, 143 

Mg
2+

, Ca
2+

, Cl
-
, NO3

-
, SO4

2-
), OC (Organic Carbon), EC (Elemental Carbon), elements (Li, Be, B, Al, V, Cr, Mn, Fe, 144 

Co, Ni, Cu, Zn, As, Sb, Cs, Ba, U, Na, Mg, K, Ca, Rb, Sr) and PAHs (naphtalene, acenaphthene, fluorene, 145 

phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b+j]fluoranthene, 146 

benzo[k]fluoranthene, benzo[a]pyrene, dibenzo(a,h)antracene, benzo[g,h,i]perylene and indeno[1,2,3-c,d]pyrene). 147 

3.2.1  SEM-EDS analyses 148 

The powder deposits were analyzed by SEM-EDS (electron microscopy coupled to an energy dispersive spectrometer) 149 

in order to observe the surface morphology and to study the chemical composition. The instrument used was a Hitachi 150 

TM1000 equipped with an energy dispersive X-ray spectrometer (Oxford Instruments Swift ED). The spectra were 151 

acquired directly on a small portion of powder attached to the sample holder by adhesive tape. 152 

3.2.2 Inorganic components analyses 153 

An ICS-1000 Ion Chromatograph (Dionex) was used for the water-soluble inorganic constituents determination (NO3
−

, 154 

SO4
2−

, F
−
, Cl

−
, NO2

−
, Br

−
, NH4

+
, Na

+
, K

+ 
and Ca

2+
). The samples, about 20 mg, were dissolved in 10 mL of MQ water. 155 

The set-up of the extraction procedure is described in detail in Fermo et al. 2006a and Piazzalunga et al. 2013a. All 156 

reagents were of analytical grade (Fluka, Milwaukee, WI, USA). Ultrapure water was produced by a Milli-Q system 157 

(Millipore, Bedford, MA, USA). All the ions concentrations determined were higher then the LOD for this technique 158 

(Piazzalunga et al. 2013a). 159 

3.2.3 Carbonaceous fraction analysis 160 

For the analysis of the carbonaceous fraction of the powder deposits two different methodologies have been used. Total 161 

carbon (TC) content has been estimated by both Thermogravimetric analyzer coupled with FT-IR (TGA/FTIR) and a 162 

Carbon, Nitrogen, Hydrogen (CHN) analyzer. TC is given by the sum of OC (organic carbon) and EC (elemental 163 

carbon), apart from a small quantity of CC (carbonatic carbon). 164 

The quantification of OC and EC has been carried by TGA/FTIR as described in Fermo et al., 2006b. The 165 

concentrations determined were higher then LOD (Piazzalunga et al. 2013). 166 

CHN analyses were carried out by a CHNS/O Perkin Elmer 2400 Series II elemental analyzer using an accessory for the 167 

analysis of solids. 168 

3.2.4 Polycyclic Aromatic Hydrocarbons analysis 169 
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PAHs (polycyclic aromatic hydrocarbons) analyses have been performed by high performance liquid chromatography 170 

with fluorimetric detection (HPLC-FLD) according to ISO 16362 (2005), which is specific for the determination of 171 

PAHs by HPLC. 172 

For the analysis about 30 mg of powder were treated. An ultrasonic bath extraction for 15 min was performed using 10 173 

mL of dichloromethane (x3 times) and a solution of 6-methylchrysene 40 g/L and 1-metilantracene as internal 174 

standard. After this step the solution was reduced to known volume (1 mL) and filtered by PTFE 0.45 m filter. Before 175 

the step of evaporation 50 L of dimethyl sulfoxide (DMSO) were added in order to retain in solution the lighter 176 

hydrocarbons (DMSO has a higher boiling temperature). The column used for the analyses was Vydac 201 TP 52 (25 177 

cm x 4,6 mm internal diameter). The concentrations reported were higher then LOD for this techniques. 178 

3.2.5 Elemental analysis by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) 179 

Aliquots of about 60 mg of powder or ash were dissolved by acid attack, through a digestion procedure based on a 180 

‘controlled microwave’ technique by PEEKEM mod. EXCEL 2000, using an acid solution (Fluka trace selected for 181 

trace analysis reagents), of HNO3:HCl:HF:H2O in a 3:1:05:3 (v/v/v/v) ratio. Table SI1 (reported as Supplementary 182 

Information (SI)) shows the digestion conditions including four steps (A, B, C and D). The operating conditions are 183 

reported in Table SI2. Twenty-three chemical elements were quantified by ICP–MS. The concentrations reported were 184 

higher then LOD for this techniques. Furthermore the recovery percentages for some analytes were determined 185 

analyzing the certified reference material ‘Road dust BCR-CRM_CW7’. In most of the cases (Co, Ni, Zn, As, Ba) the 186 

recovery was higher than 90%. 187 

 188 

4. Results and discussion 189 

4.1 Morphology and chemical composition of particles  190 

In order to acquire information on the morphology, dimension and average bulk composition of the three kinds of 191 

samples (indoor, outdoor and ash) SEM-EDS analyses have been performed. In Figure 2 the SEM images for three 192 

samples collected at Phakding are reported. Comparing the images acquired on the indoor and outdoor samples with 193 

those on the wood ashes it has been observed that indoor and outdoor powders are generally formed by larger particles 194 

(Fig. 2a and Fig. 2b) with respects to what is observable for the wood ash (Fig. 2c). By EDS analyses (see Fig. 2d), it is 195 

possible to put in evidence the major differences among the three kinds of samples. In particular it is evident how the 196 

outdoor samples show a higher Si and Al content due to soil resuspension, while Ca is higher in the ash and the indoor 197 

powder confirming the contribution of wood ash resuspension to the indoor samples; in fact, Ca and K are generally 198 

present in high concentrations in wood ashes (Campbell, 1990; Misra et al., 1993; Nordin, 1994;  Salam et al., 2013; 199 

Deka and Hoque, 2015). 200 

In the case of Pangboche from the comparison among indoor, outdoor and ash samples (see Fig. SI1a, Fig. SI1b and 201 

Fig. SI1c) it is even more evident how the dimensions of the particles are lower for the ash (Fig. SI1c) and some of 202 

these particles are distinguishable in the indoor samples (Fig. SI1a) where larger particles are predominant. From the 203 

analyses carried out on the single particles the presence of heavy metals such as, for example, titanium, has been 204 

disclosed (insert of Fig. SI1a).  205 
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 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

Fig. 2. SEM images for a) Phakding indoor sample (Phak IN 1), b) Phakding outdoor sample (Phak OUT), c) Phakding 217 

wood ash sample (Phak ASH), d) percentage composition analyzed by SEM-EDS for Phak IN (blue), Phak OUT 218 

(orange), Phak ASH (grey) 219 

4.2 Organic and Elemental Carbon 220 

Regarding OC and EC analytical determination, it is worth noting that the analysis of the two constituents in PM 221 

samples is commonly carried out by a dedicated methodology, namely TOT (thermal optical transmittance) (Chow et 222 

al., 1993, Piazzalunga et al., 2013a). However this technique requires that particulate matter is collected on a quartz 223 

fiber filter, and so it cannot be here applied being our samples in form of powder deposits. Therefore an alternative 224 

method, namely TGA-FTIR (Fermo et al., 2006b), has been employed. 225 

Average indoor OC concentration (Table 1) shows higher value than outdoor and ashes one. Comparing OC values 226 

found in our study with those obtained by Deka and Hoque, 2015 for biomass fuel smoke particles (BSFP) and by Alves 227 

et al. analyzing smoke emission from biomass burning (Alves et al., 2010), we have found similar values. The 228 

variability of EC values could be due to the variety of fuels employed in the stoves. In particular, average EC 229 

concentration for the ashes is higher than indoor and outdoor ones and is similar to what obtained by Deka and Hoque, 230 

2015. It is worth noting that EC is almost equivalent to BC (black carbon) that is generally determined by optical 231 

methods (Massabò et al., 2015). As mentioned in the introduction BC in the Himalayan area has a high impact on both 232 

climate change and environment. For these reasons, EC quantification is of great interest. 233 

Table 1. Mass percentage of indoor, outdoor and ashes average values of organic carbon (OC), elemental carbon (EC) 234 

and total carbon (TC), expressed in mass percentage, obtained by TGA-FT IR; the ranges of variation are shown in the 235 

brackets. Together with TC, also hydrogen (H) and total nitrogen (TN) obtained by CHN analyzer are also reported. 236 

c) 

a) b) 

d) 
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 237 

In order to validate the data obtained by TGA-FTIR, CHN analyses have been also performed in order to compare TC 238 

values (total carbon values, TC=OC + EC). In fact, while by TGA-FTIR the carbon chemical speciation is obtainable in 239 

terms of OC and EC, CHN allows quantifying total carbon only. The correlation between the two techniques, shown in 240 

Figure SI2, is quite fair. 241 

Figure 3 shows the mass percentages for OC and EC for all collected samples. It is possible to note that ash samples 242 

show lower OC than indoor ones suggesting that there is an accumulation of ashes in the powder indoor deposits.  243 

Sample Phak IN 2 shows the higher EC mass percentage among indoor samples. In this case, the fuel is the same as that 244 

used at Namche (see Fig. 1) so the different ash composition could be due to different burning conditions and/or to the 245 

employment of a different stove. It is worth noting that the highest EC percentage is showed by the corresponding ash. 246 

In spite of the variability among the samples belonging to the same category (indoor, outdoor and ash), biomass burning 247 

in house heating and cooking activities is the major source for outdoor EC: it is to be taken in mind, in fact, the total 248 

absence in the investigated area of other sources, such as vehicular traffic. Referring to the literature Rehman et al. 249 

(2011) evaluating the amount of BC concentrations during cooking hours found that, in the Indo-Gangetic-Plains region 250 

of India, cooking based on the use of solid biomass fuels was a major source of ambient BC with indoor BC values 251 

during the peak hours much higher than the outdoor ones. This confirms our hypothesis on the high contribution of 252 

heating and cooking activities to EC emissions. 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

Fig. 3. Mass percentage of OC and EC detected for all samples. 264 
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In Table 2 some characteristic carbon mass ratios have been reported. Ratios between chemical species present in PM 265 

emissions are generally used to discriminate the sources of ambient particulate matter (Novakov et al., 2000, Saud et al., 266 

2013). In particular high OC/EC ratios indicate the contribution of biomass burning (Saarikoski et al., 2008, Ram et al., 267 

2010). In Table 2 the ratios coming from the literature and calculated for emissions from burning of the most 268 

widespread biomass fuel used for the cooking, are also reported. High value of the ratios OC/EC, as those determined in 269 

our study,  are typical of biomass burning combustion, even if our values are likely higher with respect to those reported 270 

by Deka and Hoque, 2015. Nevertheless according to Deka and Hoque, 2015 the moisture content of biomass fuel 271 

influences OC/EC ratio in emitted particles and generally OC/EC ratio for different biomass fuel vary to a greater 272 

extend, which greatly depend on the fuel type and burning conditions. This may justify the great variability among the 273 

OC/EC values reported in Table 2. Furthermore it is worth to note that the highest values observed in the present study 274 

(namely 95 and 128) are in accordance with what reported by Alves (Alves et al., 2010) examining emissions from 275 

biomass burning and attributed to condensation process of large hydrocarbons. To our knowledge in the literature there 276 

are no reference values for OC/EC ratio from biomass burning source that relate to the Mt Everest region considered in 277 

our study. Also the other ratios reported in Table 2 show higher values than literature ones, in particular concerning 278 

K
+
/EC ratio. Alves et al., 2010 and Saud et al., 2013 attribute significant amounts of K

+
 to emissions from different 279 

types of biomass burning. The highest values determined in our case are due to lower EC. On the contrary the two ratios 280 

Cl
-
/EC and SO4

2-
/EC are in agreement with what found by Deka and Hoque, 2015. It is important to underline that no 281 

information about chemical characterization for indoor PM deposits and chemical parameters ratios are present for the 282 

Mt Everest region considered in our study. 283 

Table 2. Indoor OC/EC, Cl-/EC, SO4
2-

/EC and K+/EC mass ratios. The standard deviations are reported in brackets. 284 
 285 

 286 

 287 

4.3 Polycyclic Aromatic Hydrocarbons 288 
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It is well known that wood burning is a source of PAH (IARC 2010; Piazzalunga et al., 2011; Piazzalunga et al., 2013b) 289 

and this class of substances is of great interest to be analyzed because of their adverse effects on human health (IARC, 290 

2010). Observing Figure 4 it is interesting to note how the average indoor and ash concentrations for the 15 analysed 291 

PAHs, are very similar and higher than the outdoor values suggesting that biomass combustion is a source PAHs in the 292 

outdoor environment. A recent study carried out  by Rajput et al. ( 2013) has shown that in the Northeastern Himalaya, 293 

an area not far from the SNPBZ, the average concentrations of PAHs sum in the atmospheric particulate matter was 294 

13.5 ng/m
3
 with an B(a)P average value of 1.82 ng/m

3
 

3
 for air mass TYPE I and 16.5 ng/m

3
 with an B(a)P average 295 

concentration of 2.84 ng/m
3
 for air mass TYPE II respectively, while the European Community has established a B(a)P 296 

limit value of 1 ng/m
3
 
3
 that must not be exceeded. 297 

It is worth to notice that in our study the sampling campaign has been carried out during June, so lower PAH 298 

concentrations are expected with respect to those that would be registered in wintertime. In another study (Chen et al., 299 

2014), carried out on the Chinese side of the Tibetan Plateau, a more distant area, the PAH sum average concentrations 300 

ranged between 0.06 and 2.53 ng/m
3
, with the higher values during the autumn and winter seasons. 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 

Fig. 4. Indoor, outdoor and ash PAHs average concentrations; in the inset: principal PAHs diagnostic ratio as source 313 

markers (average values). 314 

Since in our case it was not possible to perform an active sampling of the aerosol particulate matter, as a consequence it 315 

was not possible to make a direct comparison with the PAHs concentrations reported in these literature studies. 316 

Nevertheless an estimation could be tried: considering that in our case PAH concentrations in indoor and ash samples 317 

are more than 3 times the outdoor values, on the base of the data reported for PAHs outdoor concentration in the same 318 

area, we can expect indoor concentrations, which far exceed the limits set for the protection of human health. 319 
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As regards PAHs profile (Fig. 4) the average indoor concentration of chrysene is substantially higher than the ash and 320 

outdoors ones; it is worth to notice that high emissions of chrysene are attributable to the cooking source (IARC, 2012). 321 

In the inset in Figure 4 principal diagnostic ratios for determined PAHs are showed. Comparing our values with some 322 

reference values reported in the literature (Rajput et al., 2013) a pyrogenic source can be assumed for PAH in the 323 

particulate phase; moreover fluoranthene/pyrene and fluoranthene/fluoranthene+pyrene ratios indicate wood as 324 

prevalent source in indoor deposits and ashes, while in the outdoor samples the ratios are little lower than 1 for 325 

fluoranthene/pyrene and lower than 0.5 for fluoranthene/fluoranthene+pyrene indicating probably the contribution of 326 

other combustion sources. It is to be notice, in fact, that in the Namche village there is a dump where the  wastes are 327 

burnt. 328 

4.5 Inorganic constituents and trace elements 329 

As concerns the inorganic constituents Ca
2+

 and K
+
 (Figure SI4a) are the more abundant cations in the indoor samples 330 

in accordance with what found by other authors analyzing biomass fuel smoke particles (Deka and Hoque, 2015). In 331 

several works K
+
 and Ca

2+
 are considered as major contributions to biomass burning particulate or deposits (Salam et al, 332 

2013, Deka and Hoque, 2015) and K
+
 is often used as marker of wood (biomass) smoke. K

+
indoor/K

+
outdoor ratio found in 333 

our study was 4.4 suggesting that in house biomass burning is the largest contributor of potassium atmospheric 334 

concentration. Moreover Ca
2+

indoor/Ca
2+

outdoor ratio was bigger than 1 (namely 2.9). Even though Ca does not have 335 

harmful effect, it plays a significant role on rain, water as well as soil chemistry for the ionic balance. 336 

For the anions in the case of biomass fuel smoke particles the two main observed species are generally chloride and 337 

sulphate (Deka and Hoque, 2015). In our samples sulphate average concentrations (Figure SI4a) have lower average 338 

value in the outdoor samples with respect to the indoor and ash one suggesting an indoor relevant source for this specie, 339 

according to elemental emissions by biomass burning (Nordin, 1994). Indoor, outdoor and ash elements average 340 

concentrations are shown in Table SI3. 341 

Chromium, cobalt, nickel, arsenic, copper, zinc and barium are among of the more toxic elements analyzed. In fact Cr 342 

and As are included in U.S. Environmental Protection Agency (USEPA) and IARC (IARC) as ‘known’ or ‘probable’ 343 

human carcinogens. In particular reactive oxygen species (ROS) production and oxidative stress play a key role in the 344 

toxicity and carcinogenicity of trace elements such as As, Cd, Cr, Pb and Hg (Tchounwou et al., 2012). For these 345 

elements average indoor concentrations are slight higher or higher than outdoor ones (Fig. SI5), except for arsenic and 346 

barium, suggesting an indoor sources for most of them. Cr concentration was higher with respect to the other 347 

anthropogenic elements such as Ni, Co and As confirming the results of Deka and Hoque 2015 showing that rural 348 

kitchens are source of carcinogenic elements. Finally Zinc measures confirm that this metal is  also emitted from 349 

biomass burning and wood combustion (Nordin, 1994; Yamasoe et al., 2000, Deka and Hoque, 2015). 350 

From the literature, it is known that calculation of enrichment factors (EF) values helps to determine whether a certain 351 

element has additional or anthropogenic sources other than its major natural sources. Since iron (Fe) has been used as a 352 

reference element for an EF evaluation, assuming that the contribution of its anthropogenic sources to the atmosphere is 353 

negligible (Yaroshevsky, 2006), the EF calculation formula has been applied in our study as follows (1): 354 

   
 
 

  
    

 
 

  
      

       Eq. 1 355 
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where X is the element’s concentration in our samples. If the EF value approaches unity, then crustal sources are 356 

predominant. In general, an EF > 5 indicates that a large fraction of the element can be attributed to non-crustal or 357 

anthropogenic sources (Wu et al., 2007). 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

Fig. 5. Enrichment factor (EF) bigger than 5 in the outdoor and indoor collected samples. 367 

In Figure 5, where only EF bigger than 5 are shown, it is possible to note that K, Ca, Na, Zn and Cu show an EF much 368 

bigger than 5 for outdoor and indoor samples with outdoor values lower than indoor ones. This suggests for these 369 

elements a mixed origin, natural and anthropogenic. Moreover because EF for indoor samples is bigger than outdoor, 370 

for the indoor samples the anthropogenic sources are more relevant. The application of the enrichment factor approach 371 

confirms the importance of in-house biomass burning on particulate deposits. 372 

Taking into account all the chemical constituents analytically determined on the samples (ash, indoor and outdoor), it 373 

has been possible to reconstruct the mass percentage composition as reported in Figure 6. 374 

 375 

Fig. 6. Average relative contribution of analyzed species: Chloride (Cl
-
), Nitrate (NO

3-
), Sulphate (SO4

2-
), Organic 376 

Carbon (OC), Elemental Carbon (EC) and elements (sum of elements analyzed). 377 

OC is by far the more abundant component of indoor powder deposits followed by sum of elements and EC; for the 378 

outdoor particles the sum of elements is the more than measured indoor,  followed by OC and Cl
-
. As discussed above, 379 

for outdoor samples Si and Al show higher values than for indoor samples, suggesting a considerable contribution of the 380 

soil resuspension for outdoor deposits. In the case of ash particles, the sum of elements is the more abundant 381 
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contribution followed by OC and EC. It is interesting to note as for ash particles EC average concentration is similar to 382 

OC ones. 383 

Conclusions 384 

In our study, the chemical composition of indoor deposits and ashes generated by the combustion of different fuels 385 

employed in household stoves in four villages of a high elevated Central Himalayan region has been obtained. In this 386 

area the very extreme conditions (as lack of local electricity sources) do not allow sampling campaigns with 387 

conventional systems. Indoor deposits and ashes compositions have been compared with corresponding outdoor 388 

deposits. Chemical characterization on the samples collected in this study suggested that biomass burning in house 389 

heating and cooking activities is a relevant source affecting significantly particulate outdoor depositions. OC, the more 390 

abundant component of indoor particles, with an  average indoor concentration double of the OC outdoor, indicate the 391 

importance of in-house burning as source of OC at local level. . Among analyzed cations, K
+
 and Ca

2+
 were the more 392 

abundant ones in the indoor and ash samples. K
+

indoor/K
+

outdoor ratio found in our study is bigger than 4 confirming the 393 

important contribution of wood burning since potassium is a specific marker for this source. Some toxic anthropogenic 394 

elements such as Cr, Ni, Co and As, Cr showed higher concentration levels with biggest average concentration in ash 395 

samples and almost similar between indoor and outdoor samples, confirming the importance of these emissions in 396 

possible diseases in the domestic environment. 397 

Among the organic compounds, phase particulate PAHs associated to cooking activities and biomass burning have 398 

relevant concentrations in indoor samples: indoor average concentration of PAHs whit bigger molecular weight are 399 

generally three times higher than average outdoor ones and average indoor concentration of chrysene is particularly 400 

higher than outdoor and ashes ones. Considering these results and, on the base of the data reported for PAHs outdoor 401 

concentration in the same area, we can expect indoor concentrations, as ng×m
-3

, which far exceed the limits set for the 402 

protection of human health. 403 

A regular exposure to such high levels of PAHs and toxic elements such as Cr and As has an impact on health of people 404 

mostly women and children that spend in indoor environment more time. For these reasons, more efforts in the studying 405 

and investigations on this kind of rural environments would be needed. Moreover an improving of stove’s technology 406 

(William et al, 2014) used for cooking, lightening and heating activities can reduce the human exposure risk. 407 
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