98 research outputs found

    Pediatric Liver Transplantation: Then and Now

    Get PDF
    This paper reviews the past 50 years of liver transplantation in children from the perspective of patient demographics, perioperative patient management, surgical techniques, immunosuppression and patient outcomes

    No evidence for a saccadic range effect for visually guided and memory-guided saccades in simple saccade-targeting tasks

    Get PDF
    International audienceSaccades to single targets in peripheral vision are typically characterized by an undershoot bias. Putting this bias to a test, Kapoula [1] used a paradigm in which observers were presented with two different sets of target eccentricities that partially overlapped each other. Her data were suggestive of a saccadic range effect (SRE): There was a tendency for saccades to overshoot close targets and undershoot far targets in a block, suggesting that there was a response bias towards the center of eccentricities in a given block. Our Experiment 1 was a close replication of the original study by Kapoula [1]. In addition, we tested whether the SRE is sensitive to top-down requirements associated with the task, and we also varied the target presentation duration. In Experiments 1 and 2, we expected to replicate the SRE for a visual discrimination task. The simple visual saccade-targeting task in Experiment 3, entailing minimal top-down influence, was expected to elicit a weaker SRE. Voluntary saccades to remembered target locations in Experiment 3 were expected to elicit the strongest SRE. Contrary to these predictions, we did not observe a SRE in any of the tasks. Our findings complement the results reported by Gillen et al. [2] who failed to find the effect in a saccade-targeting task with a very brief target presentation. Together, these results suggest that unlike arm movements, saccadic eye movements are not biased towards making saccades of a constant, optimal amplitude for the task

    Mechanism of Neutralization of Herpes Simplex Virus by Antibodies Directed at the Fusion Domain of Glycoprotein B

    Get PDF
    Glycoprotein B (gB), the fusogen of herpes simplex virus (HSV), is a class III fusion protein with a trimeric ectodomain of known structure for the postfusion state. Seen by negative-staining electron microscopy, it presents as a rod with three lobes (base, middle, and crown). gB has four functional regions (FR), defined by the physical location of epitopes recognized by anti-gB neutralizing monoclonal antibodies (MAbs). Located in the base, FR1 contains two internal fusion loops (FLs) and is the site of gB-lipid interaction (the fusion domain). Many of the MAbs to FR1 are neutralizing, block cell-cell fusion, and prevent the association of gB with lipid, suggesting that these MAbs affect FL function. Here we characterize FR1 epitopes by using electron microscopy to visualize purified Fab-gB ectodomain complexes, thus confirming the locations of several epitopes and localizing those of MAbs DL16 and SS63. We also generated MAb-resistant viruses in order to localize the SS55 epitope precisely. Because none of the epitopes of our anti-FR1 MAbs mapped to the FLs, we hyperimmunized rabbits with FL1 or FL2 peptides to generate polyclonal antibodies (PAbs). While the anti-FL1 PAb failed to bind gB, the anti-FL2 PAb had neutralizing activity, implying that the FLs become exposed during virus entry. Unexpectedly, the anti-FL2 PAb (and the anti-FR1 MAbs) bound to liposome-associated gB, suggesting that their epitopes are accessible even when the FLs engage lipid. These studies provide possible mechanisms of action for HSV neutralization and insight into how gB FR1 contributes to viral fusion. IMPORTANCE: For herpesviruses, such as HSV, entry into a target cell involves transfer of the capsid-encased genome of the virus to the target cell after fusion of the lipid envelope of the virus with a lipid membrane of the host. Virus-encoded glycoproteins in the envelope are responsible for fusion. Antibodies to these glycoproteins are important biological tools, providing a way of examining how fusion works. Here we used electron microscopy and other techniques to study a panel of anti-gB antibodies. Some, with virus-neutralizing activity, impair gB-lipid association. We also generated a peptide antibody against one of the gB fusion loops; its properties provide insight into the way the fusion loops function as gB transits from its prefusion form to an active fusogen

    Augmenter of liver regeneration

    Get PDF
    ‘Augmenter of liver regeneration’ (ALR) (also known as hepatic stimulatory substance or hepatopoietin) was originally found to promote growth of hepatocytes in the regenerating or injured liver. ALR is expressed ubiquitously in all organs, and exclusively in hepatocytes in the liver. ALR, a survival factor for hepatocytes, exhibits significant homology with ERV1 (essential for respiration and viability) protein that is essential for the survival of the yeast, Saccharomyces cerevisiae. ALR comprises 198 to 205 amino acids (approximately 22 kDa), but is post-translationally modified to three high molecular weight species (approximately 38 to 42 kDa) found in hepatocytes. ALR is present in mitochondria, cytosol, endoplasmic reticulum, and nucleus. Mitochondrial ALR may be involved in oxidative phosphorylation, but also functions as sulfhydryl oxidase and cytochrome c reductase, and causes Fe/S maturation of proteins. ALR, secreted by hepatocytes, stimulates synthesis of TNF-α, IL-6, and nitric oxide in Kupffer cells via a G-protein coupled receptor. While the 22 kDa rat recombinant ALR does not stimulate DNA synthesis in hepatocytes, the short form (15 kDa) of human recombinant ALR was reported to be equipotent as or even stronger than TGF-α or HGF as a mitogen for hepatocytes. Altered serum ALR levels in certain pathological conditions suggest that it may be a diagnostic marker for liver injury/disease. Although ALR appears to have multiple functions, the knowledge of its role in various organs, including the liver, is extremely inadequate, and it is not known whether different ALR species have distinct functions. Future research should provide better understanding of the expression and functions of this enigmatic molecule

    Two phases of disulfide bond formation have differing requirements for oxygen

    Get PDF
    Most proteins destined for the extracellular space require disulfide bonds for folding and stability. Disulfide bonds are introduced co- and post-translationally in endoplasmic reticulum (ER) cargo in a redox relay that requires a terminal electron acceptor. Oxygen can serve as the electron acceptor in vitro, but its role in vivo remains unknown. Hypoxia causes ER stress, suggesting a role for oxygen in protein folding. Here we demonstrate the existence of two phases of disulfide bond formation in living mammalian cells, with differential requirements for oxygen. Disulfide. bonds introduced rapidly during protein synthesis can occur without oxygen, whereas those introduced during post-translational folding or isomerization are oxygen dependent. Other protein maturation processes in the secretory pathway, including ER-localized N-linked glycosylation, glycan trimming, Golgi-localized complex glycosylation, and protein transport, occur independently of oxygen availability. These results suggest that an alternative electron acceptor is available transiently during an initial phase of disulfide bond formation and that post-translational oxygen-dependent disulfide bond formation causes hypoxia-induced ER stress

    Predicting the valence of a scene from observers’ eye movements

    Get PDF
    Multimedia analysis benefits from understanding the emotional content of a scene in a variety of tasks such as video genre classification and content-based image retrieval. Recently, there has been an increasing interest in applying human bio-signals, particularly eye movements, to recognize the emotional gist of a scene such as its valence. In order to determine the emotional category of images using eye movements, the existing methods often learn a classifier using several features that are extracted from eye movements. Although it has been shown that eye movement is potentially useful for recognition of scene valence, the contribution of each feature is not well-studied. To address the issue, we study the contribution of features extracted from eye movements in the classification of images into pleasant, neutral, and unpleasant categories. We assess ten features and their fusion. The features are histogram of saccade orientation, histogram of saccade slope, histogram of saccade length, histogram of saccade duration, histogram of saccade velocity, histogram of fixation duration, fixation histogram, top-ten salient coordinates, and saliency map. We utilize machine learning approach to analyze the performance of features by learning a support vector machine and exploiting various feature fusion schemes. The experiments reveal that ‘saliency map’, ‘fixation histogram’, ‘histogram of fixation duration’, and ‘histogram of saccade slope’ are the most contributing features. The selected features signify the influence of fixation information and angular behavior of eye movements in the recognition of the valence of images

    Fixation durations in scene viewing:Modeling the effects of local image features, oculomotor parameters, and task

    Get PDF
    Scene perception requires the orchestration of image- and task-related processes with oculomotor constraints. The present study was designed to investigate how these factors influence how long the eyes remain fixated on a given location. Linear mixed models (LMMs) were used to test whether local image statistics (including luminance, luminance contrast, edge density, visual clutter, and the number of homogeneous segments), calculated for 1° circular regions around fixation locations, modulate fixation durations, and how these effects depend on task-related control. Fixation durations and locations were recorded from 72 participants, each viewing 135 scenes under three different viewing instructions (memorization, preference judgment, and search). Along with the image-related predictors, the LMMs simultaneously considered a number of oculomotor and spatiotemporal covariates, including the amplitudes of the previous and next saccades, and viewing time. As a key finding, the local image features around the current fixation predicted this fixation’s duration. For instance, greater luminance was associated with shorter fixation durations. Such immediacy effects were found for all three viewing tasks. Moreover, in the memorization and preference tasks, some evidence for successor effects emerged, such that some image characteristics of the upcoming location influenced how long the eyes stayed at the current location. In contrast, in the search task, scene processing was not distributed across fixation durations within the visual span. The LMM-based framework of analysis, applied to the control of fixation durations in scenes, suggests important constraints for models of scene perception and search, and for visual attention in general
    corecore