27 research outputs found
Tumores Cerebrais: Impacto nas Funções Neurocognitivas, Motricidade e Qualidade de Vida dos Pacientes
Brain tumors profoundly affect neurocognitive functions, motor skills, and quality of life (QoL) in patients. This integrative review synthesizes findings from seven selected studies identified through a PubMed search combining terms related to QoL, brain tumors, neurocognitive impairment, and motor skills. The review explores various dimensions of QoL, including physical, emotional, and social well-being, and their interplay with neurocognitive functions and motor abilities in patients with brain tumors. Key findings highlight the impact of treatment modalities, tumor location, and patient demographics on QoL outcomes. The review underscores the need for tailored interventions to improve both clinical outcomes and patient-reported QoL metrics in this vulnerable population.Os tumores cerebrais exercem um profundo impacto nas funções neurocognitivas, habilidades motoras e qualidade de vida (QV) dos pacientes. Esta revisão integrativa sintetiza os achados de sete estudos selecionados através de uma busca no PubMed combinando termos relacionados à QV, tumores cerebrais, comprometimento neurocognitivo e habilidades motoras. A revisão explora diversas dimensões da QV, incluindo bem-estar físico, emocional e social, e sua interação com as funções neurocognitivas e habilidades motoras em pacientes com tumores cerebrais. Os principais achados destacam o impacto das modalidades de tratamento, localização do tumor e características demográficas dos pacientes nos resultados de QV. A revisão enfatiza a necessidade de intervenções personalizadas para melhorar tanto os resultados clínicos quanto as métricas de QV relatadas pelos pacientes nessa população vulnerável
DESAFIOS E ESTRATÉGIAS NA GESTÃO DE OVERDOSE DE FENTANIL E O USO DA NALOXONA
Since the late 1990s, the United States has faced a serious opioid crisis, worsened by the spread of fentanyl. This crisis has evolved in three waves: prescription opioid abuse, increased heroin use, and fentanyl-related deaths. The high potency and rapid action of fentanyl, along with its presence on the illicit market, make the treatment of overdoses difficult and require new therapeutic approaches. Naloxone, effective against other opioids, is less effective against fentanyl due to its complex pharmacokinetics and adverse effects. Recent studies suggest the need for higher doses of naloxone, close monitoring, and respiratory support to improve clinical outcomes. Furthermore, there is an urgent need for more research to determine the optimal dosage of naloxone and evaluate new interventions. Adequate training of healthcare professionals and effective public policies are essential to combat the opioid crisis.Desde o final dos anos 1990, os Estados Unidos enfrentam uma grave crise de opioides, agravada pela disseminação do fentanil. Essa crise evoluiu em três ondas: abuso de opioides prescritos, aumento do uso de heroína e mortes relacionadas ao fentanil. A elevada potência e a rápida ação do fentanil, junto com sua presença no mercado ilícito, dificultam o tratamento de overdoses e exigem novas abordagens terapêuticas. A naloxona, eficaz contra outros opioides, mostra-se menos eficaz contra o fentanil devido à sua complexa farmacocinética e efeitos adversos. Estudos recentes sugerem a necessidade de doses maiores de naloxona, monitoramento rigoroso e suporte respiratório para melhorar os resultados clínicos. Além disso, há uma necessidade urgente de mais pesquisas para determinar a dosagem ideal de naloxona e avaliar novas intervenções. O treinamento adequado dos profissionais de saúde e políticas públicas eficazes são essenciais para combater a crise dos opioides
High anti-SARS-CoV-2 antibody seroconversion rates before the second wave in Manaus, Brazil, and the protective effect of social behaviour measures: results from the prospective DETECTCoV-19 cohort
Background: The city of Manaus, Brazil, has seen two collapses of the health system due to the COVID-19 pandemic. We report anti-SARS-CoV-2 nucleocapsid IgG antibody seroconversion rates and associated risk factors in Manaus residents before the second wave of the epidemic in Brazil. Methods: A convenience sample of adult (aged ≥18 years) residents of Manaus was recruited through online and university website advertising into the DETECTCoV-19 study cohort. The current analysis of seroconversion included a subgroup of DETECTCoV-19 participants who had at least two serum sample collections separated by at least 4 weeks between Aug 19 and Oct 2, 2020 (visit 1), and Oct 19 and Nov 27, 2020 (visit 2). Those who reported (or had no data on) having a COVID-19 diagnosis before visit 1, and who were positive for anti-SARS-CoV-2 nucleocapsid IgG antibodies at visit 1 were excluded. Using an in-house ELISA, the reactivity index (RI; calculated as the optical density ratio of the sample to the negative control) for serum anti-SARS-CoV-2 nucleocapsid IgG antibodies was measured at both visits. We calculated the incidence of seroconversion (defined as RI values ≤1·5 at visit 1 and ≥1·5 at visit 2, and a ratio >2 between the visit 2 and visit 1 RI values) during the study period, as well as incidence rate ratios (IRRs) through cluster-corrected and adjusted Poisson regression models to analyse associations between seroconversion and variables related to sociodemographic characteristics, health access, comorbidities, COVID-19 exposure, protective behaviours, and symptoms. Findings: 2496 DETECTCoV-19 cohort participants returned for a follow-up visit between Oct 19 and Nov 27, 2020, of whom 204 reported having COVID-19 before the first visit and 24 had no data regarding previous disease status. 559 participants were seropositive for anti-SARS-CoV-2 nucleocapsid IgG antibodies at baseline. Of the remaining 1709 participants who were seronegative at baseline, 71 did not meet the criteria for seroconversion and were excluded from the analyses. Among the remaining 1638 participants who were seronegative at baseline, 214 showed seroconversion at visit 2. The seroconversion incidence was 13·06% (95% CI 11·52–14·79) overall and 6·78% (5·61–8·10) for symptomatic seroconversion, over a median follow-up period of 57 days (IQR 54–61). 48·1% of seroconversion events were estimated to be asymptomatic. The sample had higher proportions of affluent and higher-educated people than those reported for the Manaus city population. In the fully adjusted and corrected model, risk factors for seroconversion before visit 2 were having a COVID-19 case in the household (IRR 1·49 [95% CI 1·21–1·83]), not wearing a mask during contact with a person with COVID-19 (1·25 [1·09–1·45]), relaxation of physical distancing (1·31 [1·05–1·64]), and having flu-like symptoms (1·79 [1·23–2·59]) or a COVID-19 diagnosis (3·57 [2·27–5·63]) between the first and second visits, whereas working remotely was associated with lower incidence (0·74 [0·56–0·97]). Interpretation: An intense infection transmission period preceded the second wave of COVID-19 in Manaus. Several modifiable behaviours increased the risk of seroconversion, including non-compliance with non-pharmaceutical interventions measures such as not wearing a mask during contact, relaxation of protective measures, and non-remote working. Increased testing in high-transmission areas is needed to provide timely information about ongoing transmission and aid appropriate implementation of transmission mitigation measures. Funding: Ministry of Education, Brazil; Fundação de Amparo à Pesquisa do Estado do Amazonas; Pan American Health Organization (PAHO)/WHO.World Health OrganizationRevisión por pare
MAMMALS IN PORTUGAL : A data set of terrestrial, volant, and marine mammal occurrences in P ortugal
Mammals are threatened worldwide, with 26% of all species being includedin the IUCN threatened categories. This overall pattern is primarily associatedwith habitat loss or degradation, and human persecution for terrestrial mam-mals, and pollution, open net fishing, climate change, and prey depletion formarine mammals. Mammals play a key role in maintaining ecosystems func-tionality and resilience, and therefore information on their distribution is cru-cial to delineate and support conservation actions. MAMMALS INPORTUGAL is a publicly available data set compiling unpublishedgeoreferenced occurrence records of 92 terrestrial, volant, and marine mam-mals in mainland Portugal and archipelagos of the Azores and Madeira thatincludes 105,026 data entries between 1873 and 2021 (72% of the data occur-ring in 2000 and 2021). The methods used to collect the data were: live obser-vations/captures (43%), sign surveys (35%), camera trapping (16%),bioacoustics surveys (4%) and radiotracking, and inquiries that represent lessthan 1% of the records. The data set includes 13 types of records: (1) burrowsjsoil moundsjtunnel, (2) capture, (3) colony, (4) dead animaljhairjskullsjjaws, (5) genetic confirmation, (6) inquiries, (7) observation of live animal (8),observation in shelters, (9) photo trappingjvideo, (10) predators dietjpelletsjpine cones/nuts, (11) scatjtrackjditch, (12) telemetry and (13) vocalizationjecholocation. The spatial uncertainty of most records ranges between 0 and100 m (76%). Rodentia (n=31,573) has the highest number of records followedby Chiroptera (n=18,857), Carnivora (n=18,594), Lagomorpha (n=17,496),Cetartiodactyla (n=11,568) and Eulipotyphla (n=7008). The data setincludes records of species classified by the IUCN as threatened(e.g.,Oryctolagus cuniculus[n=12,159],Monachus monachus[n=1,512],andLynx pardinus[n=197]). We believe that this data set may stimulate thepublication of other European countries data sets that would certainly contrib-ute to ecology and conservation-related research, and therefore assisting onthe development of more accurate and tailored conservation managementstrategies for each species. There are no copyright restrictions; please cite thisdata paper when the data are used in publications.info:eu-repo/semantics/publishedVersio
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Mammals in Portugal: a data set of terrestrial, volant, and marine mammal occurrences in Portugal
Mammals are threatened worldwide, with ~26% of all species being included in the IUCN threatened categories. This overall pattern is primarily associated with habitat loss or degradation, and human persecution for terrestrial mammals, and pollution, open net fishing, climate change, and prey depletion for marine mammals. Mammals play a key role in maintaining ecosystems functionality and resilience, and therefore information on their distribution is crucial to delineate and support conservation actions. MAMMALS IN PORTUGAL is a publicly available data set compiling unpublished georeferenced occurrence records of 92 terrestrial, volant, and marine mammals in mainland Portugal and archipelagos of the Azores and Madeira that includes 105,026 data entries between 1873 and 2021 (72% of the data occurring in 2000 and 2021). The methods used to collect the data were: live observations/captures (43%), sign surveys (35%), camera trapping (16%), bioacoustics surveys (4%) and radiotracking, and inquiries that represent less than 1% of the records. The data set includes 13 types of records: (1) burrows | soil mounds | tunnel, (2) capture, (3) colony, (4) dead animal | hair | skulls | jaws, (5) genetic confirmation, (6) inquiries, (7) observation of live animal (8), observation in shelters, (9) photo trapping | video, (10) predators diet | pellets | pine cones/nuts, (11) scat | track | ditch, (12) telemetry and (13) vocalization | echolocation. The spatial uncertainty of most records ranges between 0 and 100 m (76%). Rodentia (n =31,573) has the highest number of records followed by Chiroptera (n = 18,857), Carnivora (n = 18,594), Lagomorpha (n = 17,496), Cetartiodactyla (n = 11,568) and Eulipotyphla (n = 7008). The data set includes records of species classified by the IUCN as threatened (e.g., Oryctolagus cuniculus [n = 12,159], Monachus monachus [n = 1,512], and Lynx pardinus [n = 197]). We believe that this data set may stimulate the publication of other European countries data sets that would certainly contribute to ecology and conservation-related research, and therefore assisting on the development of more accurate and tailored conservation management strategies for each species. There are no copyright restrictions; please cite this data paper when the data are used in publications
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost