15 research outputs found

    Genetic characterization of 2008 reassortant influenza A virus (H5N1), Thailand

    Get PDF
    In January and November 2008, outbreaks of avian influenza have been reported in 4 provinces of Thailand. Eight Influenza A H5N1 viruses were recovered from these 2008 AI outbreaks and comprehensively characterized and analyzed for nucleotide identity, genetic relatedness, virulence determinants, and possible sites of reassortment. The results show that the 2008 H5N1 viruses displayed genetic drift characteristics (less than 3% genetic differences), as commonly found in influenza A viruses. Based on phylogenetic analysis, clade 1 viruses in Thailand were divided into 3 distinct branches (subclades 1, 1.1 and 1.2). Six out of 8 H5N1 isolates have been identified as reassorted H5N1 viruses, while other isolates belong to an original H5N1 clade. These viruses have undergone inter-lineage reassortment between subclades 1.1 and 1.2 and thus represent new reassorted 2008 H5N1 viruses. The reassorted viruses have acquired gene segments from H5N1, subclade 1.1 (PA, HA, NP and M) and subclade 1.2 (PB2, PB1, NA and NS) in Thailand. Bootscan analysis of concatenated whole genome sequences of the 2008 H5N1 viruses supported the reassortment sites between subclade 1.1 and 1.2 viruses. Based on estimating of the time of the most recent common ancestors of the 2008 H5N1 viruses, the potential point of genetic reassortment of the viruses could be traced back to 2006. Genetic analysis of the 2008 H5N1 viruses has shown that most virulence determinants in all 8 genes of the viruses have remained unchanged. In summary, two predominant H5N1 lineages were circulating in 2008. The original CUK2-like lineage mainly circulated in central Thailand and the reassorted lineage (subclades 1.1 and 1.2) predominantly circulated in lower-north Thailand. To prevent new reassortment, emphasis should be put on prevention of H5N1 viruses circulating in high risk areas. In addition, surveillance and whole genome sequencing of H5N1 viruses should be routinely performed for monitoring the genetic drift of the virus and new reassorted strains, especially in light of potential reassortment between avian and mammalian H5N1 viruses

    Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes

    Get PDF
    Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83–99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25–22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20–17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity

    Metapopulation Dynamics Enable Persistence of Influenza A, Including A/H5N1, in Poultry

    Get PDF
    Thanks to K. Sturm-Ramirez, C. Jessup, J. Rosenthal and the staff of EcoHealth Alliance for feedback. Disclaimer: The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government.Conceived and designed the experiments: PRH TF RH DZ CSA AG MJM XX TB PD. Performed the experiments: PRH. Analyzed the data: PRH. Contributed reagents/materials/analysis tools: PRH TF RH DZ CSA AG MJM XX TB JHJ PD. Wrote the paper: PRH TF RH DZ CSA AG MJM XX TB JHJ PD.Highly pathogenic influenza A/H5N1 has persistently but sporadically caused human illness and death since 1997. Yet it is still unclear how this pathogen is able to persist globally. While wild birds seem to be a genetic reservoir for influenza A, they do not seem to be the main source of human illness. Here, we highlight the role that domestic poultry may play in maintaining A/H5N1 globally, using theoretical models of spatial population structure in poultry populations. We find that a metapopulation of moderately sized poultry flocks can sustain the pathogen in a finite poultry population for over two years. Our results suggest that it is possible that moderately intensive backyard farms could sustain the pathogen indefinitely in real systems. This fits a pattern that has been observed from many empirical systems. Rather than just employing standard culling procedures to control the disease, our model suggests ways that poultry production systems may be modified.Yeshttp://www.plosone.org/static/editorial#pee

    UNCL, the mammalian homologue of UNC-50, is an inner nuclear membrane RNA-binding protein

    No full text
    We isolated a mammalian homologue of the C. elegans gene unc-50 that Lye have named UNCL. The 777 kb rat UNCL cDNA encodes a 259 amino acid protein that is expressed in a wide variety of tissues with highest mRNA levels in brain, kidney and testis. Hydropathy plot analysis and in vitro translation experiments with microsomal membranes indicate that UNCL is a transmembrane protein. Hemagglutinin tagged UNCL was stably transfected into SaOS-2 osteosarcoma cells and exhibited a nuclear rim staining pattern which was retained following extraction with 1% Triton X-100, suggesting that UNCL localizes to the inner nuclear membrane. UNCL-HA was extractable in 350 mM NaCl, suggesting that UNCL is not associated with the nuclear matrix. Homopolymer RNA-binding assays performed on in vitro translated UNCL protein and 'structural modeling by homology' suggest that UNCL binds RNA via an amino-terminal RNA Recognition-like Motif. Since unc-50 is required for expression of assembled muscle-type nicotinic receptors in the nematode we investigated whether UNCL had a similar function for mammalian nicotinic receptors. When UNCL was co-expressed with neural nicotinic receptors in Xenopus oocytes or COS cells it increased expression of functional cell surface receptors up to 1.6-fold. We conclude that UNCL is a novel inner nuclear membrane protein that associates with RNA and is involved in the cell-surface expression of neuronal nicotinic receptors. UNCL plays a broader role because UNCL homologues are present in two yeast and a plant species, none of which express nicotinic receptors and it is also found in tissues that lack nicotinic receptors. (C) 2000 Elsevier Science B.V. All rights reserved

    Pharmacological similarities between native brain and heterologously expressed α4β2 nicotinic receptors

    No full text
    1. We studied the pharmacological properties of native rat brain and heterologously expressed rat α4β2 nicotinic receptors immunoprecipitated onto a fixed substrate with the anti-α4 antibody mAb 299. 2. Immunodepletion with the anti-β2 antibody mAb 270 showed that 89% of the mAb-299-precipitated rat brain receptors contained β2. 3. The association and dissociation rate constants for 30 pM ±[(3)H]-epibatidine binding to α4β2 receptors expressed in oocytes were 0.02±0.01 and 0.03±0.01 min(−1) (±standard error, degrees of freedom=7–8) at 20–23°C. 4. The Hill coefficients for ±[(3)H]epibatidine binding to the native brain, α4β2 receptors expressed in oocytes, and α4β2 receptors expressed in CV-1 cells (using recombinant adenovirus) were 0.69–0.70 suggesting a heterogeneous receptor population. Fits of the ±[(3)H]-epibatidine concentration-binding data to a two-site model gave K(D) s of 8–30 and 560–1,200 pM. The high-affinity sites comprised 73–74% of the native brain and oocyte α4β2 receptor population, 85% of the CV-1 α4β2 receptor population. 5. The expression of rat α4β2 receptors in CV-1 cells using vaccinia viral infection-transfection resulted in a more homogeneous receptor population (Hill coefficient of 1.0±0.2). Fits of the ±[(3)H]-epibatidine binding data to a single-site model gave a K(D) of 40±3 pM. 6. DHβE (IC(50)=260–470 nM) and the novel nicotine analogue NDNI (IC(50)=7–10 μM) inhibited 30 pM±[(3)H]-epibatidine binding to the native brain and heterologously expressed α4β2 receptors equally well. 7. The results show that α4β2-containing nicotinic receptors in the rat brain and heterologously expressed rat α4β2 receptors have similar affinities for ±[(3)H]-epibatidine, DHβE, and NDNI
    corecore