120 research outputs found

    Theory of magnetic domains in uniaxial thin films

    Full text link
    For uniaxial easy axis films, properties of magnetic domains are usually described within the Kittel model, which assumes that domain walls are much thinner than the domains. In this work we present a simple model that includes a proper description of the magnetostatic energy of domains and domain walls and also takes into account the interaction between both surfaces of the film. Our model describes the behavior of domain and wall widths as a function of film thickness, and is especially well suited for the strong stripe phase. We prove the existence of a critical value of magneto-crystalline anisotropy above which stripe domains exist for any film thickness and justify our model by comparison with exact results. The model is in good agreement with experimental data for hcp cobalt.Comment: 15 pages, 7 figure

    Electronic structure and Jahn-Teller effect in GaN:Mn and ZnS:Cr

    Full text link
    We present an ab-initio and analytical study of the Jahn-Teller effect in two diluted magnetic semiconductors (DMS) with d4 impurities, namely Mn-doped GaN and Cr-doped ZnS. We show that only the combined treatment of Jahn-Teller distortion and strong electron correlation in the 3d shell may lead to the correct insulating electronic structure. Using the LSDA+U approach we obtain the Jahn-Teller energy gain in reasonable agreement with the available experimental data. The ab-initio results are completed by a more phenomenological ligand field theory.Comment: 15 pages, 5 figure

    Magnetic anisotropy in epitaxial Mn5Ge3 films

    Get PDF
    High crystalline quality Mn 5 Ge 3 films with thicknesses ranging 4–200 nm have been grown on Ge(111) substrates by solid phase epitaxy. The basal hexagonal plane of Mn 5 Ge 3 is in epitaxy with the Ge(111) plane. Magnetic properties of the films have been investigated as a function of the film thickness and the magnetization curves have been analyzed using a theory that includes a description of magnetic domains in uniaxial thin films. The results clearly indicate the existence of a critical thickness below which the magnetic stripe phase disappears. We have determined the value of this thickness to lie between 10 and 25 nm from the analysis of experimental magnetization curves and the theoretical fit of the in-plane remanent magnetization. Although analogies can be drawn between the behavior observed in our system and that of hcp Co, we have shown that the critical thickness is considerably smaller in Mn 5 Ge 3 ; this has the potential to open new fields of applications for Mn 5 Ge 3 thin films in magnetic recording and spintronics

    Measurement of the permanent electric dipole moment of the neutron

    Get PDF
    We present the result of an experiment to measure the electric dipole moment EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons (UCN). Our measurement stands in the long history of EDM experiments probing physics violating time reversal invariance. The salient features of this experiment were the use of a Hg-199 co-magnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic field changes. The statistical analysis was performed on blinded datasets by two separate groups while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{\rm n} = (0.0\pm1.1_{\rm stat}\pm0.2_{\rmsys})\times10^{-26}e\,{\rm cm}

    Electrically pumped continuous-wave III–V quantum dot lasers on silicon

    Get PDF
    Reliable, efficient electrically pumped silicon-based lasers would enable full integration of photonic and electronic circuits, but have previously only been realized by wafer bonding. Here, we demonstrate continuous-wave InAs/GaAs quantum dot lasers directly grown on silicon substrates with a low threshold current density of 62.5 A cm–2, a room-temperature output power exceeding 105 mW and operation up to 120 °C. Over 3,100 h of continuous-wave operating data have been collected, giving an extrapolated mean time to failure of over 100,158 h. The realization of high-performance quantum dot lasers on silicon is due to the achievement of a low density of threading dislocations on the order of 105 cm−2 in the III–V epilayers by combining a nucleation layer and dislocation filter layers with in situ thermal annealing. These results are a major advance towards reliable and cost-effective silicon-based photonic–electronic integration

    Statistical sensitivity of the nEDM apparatus at PSI to n - n' oscillations

    Get PDF
    The neutron and its hypothetical mirror counterpart, a sterile state degenerate in mass, could spontaneously mix in a process much faster than the neutron β-decay. Two groups have performed a series of experiments in search of neutron - mirror-neutron (n − n')oscillations. They reported no evidence, thereby setting stringent limits on the oscillation time τnn. Later, these data sets have been further analyzed by Berezhiani et al.(2009-2017), and signals, compatible with n - n' oscillations in the presence of mirror magnetic fields, have been reported. The Neutron Electric Dipole Moment Collaboration based at the Paul Scherrer Institute performed a new series of experiments to further test these signals. In this paper, we describe and motivate our choice of run configurations with an optimal filling time of 29 s, storage times of 180 s and 380 s, and applied magnetic fields of 10 µT and 20 µT. The choice of these run configurations ensures a reliable overlap in settings with the previous efforts and also improves the sensitivity to test the signals. We also elaborate on the technique of normalizing the neutron counts, making such a counting experiment at the ultra-cold neutron source at the Paul Scherrer Institute possible. Furthermore, the magnetic field characterization to meet the requirements of this n − n oscillation search is demonstrated. Finally, we show that this effort has a statistical sensitivity to n − n' oscillations comparable to the current leading constraints for B' = 0

    The n2EDM experiment at the Paul Scherrer Institute

    Get PDF
    We present the new spectrometer for the neutron electric dipole moment (nEDM) search at the Paul Scherrer Institute (PSI), called n2EDM. The setup is at room temperature in vacuum using ultracold neutrons. n2EDM features a large UCN double storage chamber design with neutron transport adapted to the PSI UCN source. The design builds on experience gained from the previous apparatus operated at PSI until 2017. An order of magnitude increase in sensitivity is calculated for the new baseline setup based on scalable results from the previous apparatus, and the UCN source performance achieved in 2016

    Magnetic-field uniformity in neutron electric-dipole-moment experiments

    Get PDF
    Magnetic field uniformity is of the utmost importance in experiments to measure the electric dipole moment of the neutron. A general parametrization of the magnetic field in terms of harmonic polynomial modes is proposed, going beyond the linear-gradients approximation. We review the main undesirable effects of non-uniformities: depolarization of ultracold neutrons, and Larmor frequency shifts of neutrons and mercury atoms. The theoretical predictions for these effects were verified by dedicated measurements with the single-chamber nEDM apparatus installed at the Paul Scherrer Institute

    Tools and techniques for solvent selection: green solvent selection guides

    Get PDF
    Driven by legislation and evolving attitudes towards environmental issues, establishing green solvents for extractions, separations, formulations and reaction chemistry has become an increasingly important area of research. Several general purpose solvent selection guides have now been published with the aim to reduce use of the most hazardous solvents. This review serves the purpose of explaining the role of these guides, highlighting their similarities and differences. How they can be used most effectively to enhance the greenness of chemical processes, particularly in laboratory organic synthesis and the pharmaceutical industry, is addressed in detail
    • …
    corecore