127 research outputs found

    Measurement of the permanent electric dipole moment of the neutron

    Get PDF
    We present the result of an experiment to measure the electric dipole moment EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons (UCN). Our measurement stands in the long history of EDM experiments probing physics violating time reversal invariance. The salient features of this experiment were the use of a Hg-199 co-magnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic field changes. The statistical analysis was performed on blinded datasets by two separate groups while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{\rm n} = (0.0\pm1.1_{\rm stat}\pm0.2_{\rmsys})\times10^{-26}e\,{\rm cm}

    Statistical sensitivity of the nEDM apparatus at PSI to n - n' oscillations

    Get PDF
    The neutron and its hypothetical mirror counterpart, a sterile state degenerate in mass, could spontaneously mix in a process much faster than the neutron β-decay. Two groups have performed a series of experiments in search of neutron - mirror-neutron (n − n')oscillations. They reported no evidence, thereby setting stringent limits on the oscillation time τnn. Later, these data sets have been further analyzed by Berezhiani et al.(2009-2017), and signals, compatible with n - n' oscillations in the presence of mirror magnetic fields, have been reported. The Neutron Electric Dipole Moment Collaboration based at the Paul Scherrer Institute performed a new series of experiments to further test these signals. In this paper, we describe and motivate our choice of run configurations with an optimal filling time of 29 s, storage times of 180 s and 380 s, and applied magnetic fields of 10 µT and 20 µT. The choice of these run configurations ensures a reliable overlap in settings with the previous efforts and also improves the sensitivity to test the signals. We also elaborate on the technique of normalizing the neutron counts, making such a counting experiment at the ultra-cold neutron source at the Paul Scherrer Institute possible. Furthermore, the magnetic field characterization to meet the requirements of this n − n oscillation search is demonstrated. Finally, we show that this effort has a statistical sensitivity to n − n' oscillations comparable to the current leading constraints for B' = 0

    Magnetic-field uniformity in neutron electric-dipole-moment experiments

    Get PDF
    Magnetic field uniformity is of the utmost importance in experiments to measure the electric dipole moment of the neutron. A general parametrization of the magnetic field in terms of harmonic polynomial modes is proposed, going beyond the linear-gradients approximation. We review the main undesirable effects of non-uniformities: depolarization of ultracold neutrons, and Larmor frequency shifts of neutrons and mercury atoms. The theoretical predictions for these effects were verified by dedicated measurements with the single-chamber nEDM apparatus installed at the Paul Scherrer Institute

    The n2EDM experiment at the Paul Scherrer Institute

    Get PDF
    We present the new spectrometer for the neutron electric dipole moment (nEDM) search at the Paul Scherrer Institute (PSI), called n2EDM. The setup is at room temperature in vacuum using ultracold neutrons. n2EDM features a large UCN double storage chamber design with neutron transport adapted to the PSI UCN source. The design builds on experience gained from the previous apparatus operated at PSI until 2017. An order of magnitude increase in sensitivity is calculated for the new baseline setup based on scalable results from the previous apparatus, and the UCN source performance achieved in 2016

    Tools and techniques for solvent selection: green solvent selection guides

    Get PDF
    Driven by legislation and evolving attitudes towards environmental issues, establishing green solvents for extractions, separations, formulations and reaction chemistry has become an increasingly important area of research. Several general purpose solvent selection guides have now been published with the aim to reduce use of the most hazardous solvents. This review serves the purpose of explaining the role of these guides, highlighting their similarities and differences. How they can be used most effectively to enhance the greenness of chemical processes, particularly in laboratory organic synthesis and the pharmaceutical industry, is addressed in detail

    Johnson-Nyquist noise effects in neutron electric-dipole-moment experiments

    Get PDF
    Magnetic Johnson-Nyquist noise (JNN) originating from metal electrodes, used to create a static electric field in neutron electric-dipole-moment (nEDM) experiments, may limit the sensitivity of measurements. We present here a dedicated study on JNN applied to a large-scale long-measurement-time experiment with the implementation of a comagnetometry. In this study, we derive surface- and volume-averaged root-mean-square normal noise amplitudes at a certain frequency bandwidth for a cylindrical geometry. In addition, we model the source of noise as a finite number of current dipoles and demonstrate a method to simulate temporal and three-dimensional spatial dependencies of JNN. The calculations are applied to estimate the impact of JNN on measurements with the new apparatus, n2EDM, at the Paul Scherrer Institute. We demonstrate that the performances of the optically pumped Cs133 magnetometers and Hg199 comagnetometers, which will be used in the apparatus, are not limited by JNN. Further, we find that, in measurements deploying a comagnetometer system, the impact of JNN is negligible for nEDM searches down to a sensitivity of 4×10-28ecm in a single measurement; therefore, the use of economically and mechanically favored solid aluminum electrodes is possible

    Data blinding for the nEDM experiment at PSI

    Get PDF
    Psychological bias towards, or away from, prior measurements or theory predictions is an intrinsic threat to any data analysis. While various methods can be used to try to avoid such a bias, e.g. actively avoiding looking at the result, only data blinding is a traceable and trustworthy method that can circumvent the bias and convince a public audience that there is not even an accidental psychological bias. Data blinding is nowadays a standard practice in particle physics, but it is particularly difficult for experiments searching for the neutron electric dipole moment (nEDM), as several cross measurements, in particular of the magnetic field, create a self-consistent network into which it is hard to inject a false signal. We present an algorithm that modifies the data without influencing the experiment. Results of an automated analysis of the data are used to change the recorded spin state of a few neutrons within each measurement cycle. The flexible algorithm may be applied twice (or more) to the data, thus providing the option of sequentially applying various blinding offsets for separate analysis steps with independent teams. The subtle manner in which the data are modified allows one subsequently to adjust the algorithm and to produce a re-blinded data set without revealing the initial blinding offset. The method was designed for the 2015/2016 measurement campaign of the nEDM experiment at the Paul Scherrer Institute. However, it can be re-used with minor modification for the follow-up experiment n2EDM, and may be suitable for comparable projects elsewhere

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Microwave Energy Increases Fatty Acid Methyl Ester Yield in Human Whole Blood Due to Increased Sphingomyelin Transesterification

    Full text link
    Dried blood spots (DBS) by fingertip prick collection for fatty acid profiling are becoming increasingly popular due to ease of collection, minimal invasiveness and its amenability to high-throughput analyses. Herein, we assess a microwave-assisted direct transesterification method for the production of fatty acid methyl esters (FAME) from DBS. Technical replicates of human whole blood were collected and 25-μL aliquots were applied to chromatography strips prior to analysis by a standard 3-h transesterification method or microwave-assisted direct transesterification method under various power (variable vs constant), time (1-5 min) and reagent (1-10% H2SO4 in methanol) conditions. In addition, a standard method was compared to a 5-min, 30-W power microwave in 1% H2SO4 method for FAME yield from whole blood sphingomyelin, and sphingomyelin standards alone and spiked in whole blood. Microwave-assisted direct transesterification yielded no significant differences in both quantitative (nmol/100 µL) and qualitative (mol%) fatty acid assessments after as little as 1.5- and 1-min reaction times, respectively, using the variable power method and 5% H2SO4 in methanol. However, 30-W power for 5 min increased total FAME yield of the technical replicates by 14%. This increase appears largely due to higher sphingomyelin-derived FAME yield of up to 109 and 399% compared to the standard method when determined from whole blood or pure standards, respectively. In conclusion, microwave-assisted direct transesterification of DBS achieved in as little as 1-min, and 5-min reaction times increase total fatty acids primarily by significantly improving sphingomyelin-derived fatty acid yield
    corecore