72 research outputs found

    Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

    Get PDF
    During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled

    A comparison of the use of X-ray and neutron tomographic core scanning techniques for drilling projects: insights from scanning core recovered during the Alpine Fault Deep Fault Drilling Project

    Get PDF
    Abstract. It is now commonplace for non-destructive X-ray computed tomography (CT) scans to be taken of core recovered during a drilling project. However, other forms of tomographic scanning are available, and these may be particularly useful for core that does not possess significant contrasts in density and/or atomic number to which X-rays are sensitive. Here, we compare CT and neutron tomography (NT) scans of 85 mm diameter core recovered during the first phase of the Deep Fault Drilling Project (DFDP-1) through New Zealand's Alpine Fault. For the instruments used in this study, the highest resolution images were collected in the NT scans. This allows clearer imaging of some rock features than in the CT scans. However, we observe that the highly neutron beam attenuating properties of DFDP-1 core diminish the quality of images towards the interior of the core. A comparison is also made of the suitability of these two scanning techniques for a drilling project. We conclude that CT scanning is far more favourable in most circumstances. Nevertheless, it could still be beneficial to take NT scans over limited intervals of suitable core, where varying contrast is desired. </jats:p

    Damaged beyond repair? Characterising the damage zone of a fault late in its interseismic cycle, the Alpine Fault, New Zealand

    Get PDF
    X-ray computed tomography (CT) scans of drill-core, recovered from the first phase of the Deep Fault Drilling Project (DFDP-1) through New Zealand\u27s Alpine Fault, provide an excellent opportunity to study the damage zone of a plate-bounding continental scale fault, late in its interseismic cycle. Documentation of the intermediate-macro scale damage zone structures observed in the CT images show that there is no increase in the density of these structures towards the fault\u27s principal slip zones (PSZs), at least within the interval sampled, which is 30 m above and below the PSZs. This is in agreement with independent analysis using borehole televiewer data. Instead, we conclude the density of damage zone structures to correspond to lithology. We find that 72% of fractures are fully healed, by a combination of clays, calcite and quartz, with an additional 24% partially healed. This fracture healing is consistent with the Alpine Fault\u27s late interseismic state, and the fact that the interval of damage zone sampled coincides with an alteration zone, an interval of extensive fluid-rock interaction. These fractures do not impose a reduction of P-wave velocity, as measured by wireline methods. Outside the alteration zone there is indirect evidence of less extensive fracture healing.DFDP-1 was funded by: GNS Science; Victoria University of Wellington; the University of Otago; the University of Auckland; the University of Canterbury; Deutsche Forschungsgemeinschaft and the University of Bremen; Natural Environment Research Council grants NE/J024449/1, NE/G524160/1 and NE/H012486/1 and the University Of Liverpool; and the Marsden Fund of the Royal Society of New Zealand.2018-07-2

    The Alpine Fault Hangingwall Viewed From Within: Structural Analysis of Ultrasonic Image Logs in the DFDP-2B Borehole, New Zealand

    Get PDF
    International audienceUltrasonic image logs acquired in the DFDP‐2B borehole yield the first continuous, subsurface description of the transition from schist to mylonite in the hangingwall of the Alpine Fault, New Zealand, to a depth of 818 m below surface. Three feature sets are delineated. One set, comprising foliation and foliation‐parallel veins and fractures, has a constant orientation. The average dip direction of 145° is subparallel to the dip direction of the Alpine Fault, and the average dip magnitude of 60° is similar to nearby outcrop observations of foliation in the Alpine mylonites that occur immediately above the Alpine Fault. We suggest that this foliation orientation is similar to the Alpine Fault plane at ∼1 km depth in the Whataroa valley. The other two auxiliary feature sets are interpreted as joints based on their morphology and orientation. Subvertical joints with NW‐SE (137°) strike occurring dominantly above ∼500 m are interpreted as being formed during the exhumation and unloading of the Alpine Fault's hangingwall. Gently dipping joints, predominantly observed below ∼500 m, are interpreted as inherited hydrofractures exhumed from their depth of formation. These three fracture sets, combined with subsidiary brecciated fault zones, define the fluid pathways and anisotropic permeability directions. In addition, high topographic relief, which perturbs the stress tensor, likely enhances the slip potential and thus permeability of subvertical fractures below the ridges, and of gently dipping fractures below the valleys. Thus, DFDP‐2B borehole observations support the inference of a large zone of enhanced permeability in the hangingwall of the Alpine Fault

    Structure and lithology of the Japan Trench subduction plate boundary fault

    Get PDF
    The 2011 Mw9.0 Tohoku-oki earthquake ruptured to the trench with maximum coseismic slip located on the shallow portion of the plate boundary fault. To investigate the conditions and physical processes that promoted slip to the trench, Integrated Ocean Drilling Program Expedition 343/343T sailed 1 year after the earthquake and drilled into the plate boundary ∼7 km landward of the trench, in the region of maximum slip. Core analyses show that the plate boundary décollement is localized onto an interval of smectite-rich, pelagic clay. Subsidiary structures are present in both the upper and lower plates, which define a fault zone ∼5–15m thick. Fault rocks recovered from within the clay-rich interval contain a pervasive scaly fabric defined by anastomosing, polished, and lineated surfaces with two predominant orientations. The scaly fabric is crosscut in several places by discrete contacts across which the scaly fabric is truncated and rotated, or different rocks are juxtaposed. These contacts are inferred to be faults. The plate boundary décollement therefore contains structures resulting from both distributed and localized deformation. We infer that the formation of both of these types of structures is controlled by the frictional properties of the clay: the distributed scaly fabric formed at low strain rates associated with velocity-strengthening frictional behavior, and the localized faults formed at high strain rates characterized by velocity-weakening behavior. The presence of multiple discrete faults resulting from seismic slip within the décollement suggests that rupture to the trench may be characteristic of this margin

    IL-17RA Signaling Reduces Inflammation and Mortality during Trypanosoma cruzi Infection by Recruiting Suppressive IL-10-Producing Neutrophils

    Get PDF
    Members of the IL-17 cytokine family play an important role in protection against pathogens through the induction of different effector mechanisms. We determined that IL-17A, IL-17E and IL-17F are produced during the acute phase of T. cruzi infection. Using IL-17RA knockout (KO) mice, we demonstrate that IL-17RA, the common receptor subunit for many IL-17 family members, is required for host resistance during T. cruzi infection. Furthermore, infected IL-17RA KO mice that lack of response to several IL-17 cytokines showed amplified inflammatory responses with exuberant IFN-γ and TNF production that promoted hepatic damage and mortality. Absence of IL-17RA during T. cruzi infection resulted in reduced CXCL1 and CXCL2 expression in spleen and liver and limited neutrophil recruitment. T. cruzi-stimulated neutrophils secreted IL-10 and showed an IL-10-dependent suppressive phenotype in vitro inhibiting T-cell proliferation and IFN-γ production. Specific depletion of Ly-6G+ neutrophils in vivo during T. cruzi infection raised parasitemia and serum IFN-γ concentration and resulted in increased liver pathology in WT mice and overwhelming wasting disease in IL-17RA KO mice. Adoptively transferred neutrophils were unable to migrate to tissues and to restore resistant phenotype in infected IL-17RA KO mice but migrated to spleen and liver of infected WT mice and downregulated IFN-γ production and increased survival in an IL-10 dependent manner. Our results underscore the role of IL-17RA in the modulation of IFN-γ-mediated inflammatory responses during infections and uncover a previously unrecognized regulatory mechanism that involves the IL-17RA-mediated recruitment of suppressive IL-10-producing neutrophils
    corecore