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Abstract 

Ultrasonic image logs acquired in the DFDP-2B borehole yield the first continuous, sub-surface 

description of the transition from schist to mylonite in the hangingwall of the Alpine Fault, New 

Zealand, to a depth of 818 m below surface. Three feature sets are delineated. One set, comprising 

foliation and foliation-parallel veins and fractures, has a constant orientation. The average dip 

direction of 145° is sub-parallel to the dip direction of the Alpine Fault, and the average dip magnitude 

of 60° is similar to nearby outcrop observations of foliation in the Alpine mylonites that occur 

immediately above the Alpine Fault. We suggest that this foliation orientation is similar to the Alpine 

Fault plane at ~1 km depth in the Whataroa valley. The other two auxiliary feature sets are 

interpreted as joints based on their morphology and orientation. Sub-vertical joints with NW-SE (137°) 

strike occurring dominantly above ~500 m are interpreted as being formed during the exhumation 

and unloading of the Alpine Fault's hangingwall. Gently dipping joints, predominantly observed below 

~500 m, are interpreted as inherited hydrofractures exhumed from their depth of formation. These 

three fracture sets, combined with subsidiary brecciated fault zones, define the fluid pathways and 

anisotropic permeability directions. In addition, high topographic relief, which perturbs the stress 

tensor, likely enhances the slip potential and thus permeability of sub-vertical fractures below the 

ridges, and of gently-dipping fractures below the valleys. Thus, DFDP-2B borehole observations 

support the inference of a large zone of enhanced permeability in the hangingwall of the Alpine Fault. 

1. Introduction 

Fault rocks record cumulative effects made by a range of processes in successive deformation events 

on the main fault plane and eventual subsidiary faults (Chester et al., 1993; Caine et al., 1999; Lin et 

al., 2007; Faulkner et al., 2010). Direct sub-surface measurements of structural, petrophysical, and 

hydrological properties near the Alpine Fault, the major plate boundary between the Pacific and 

Australian plates in the South Island of New Zealand, have previously been limited to shallow tunnels 

(Cox et al., 2015) and boreholes (Sutherland et al., 2012). These shallow observations may not 

represent conditions at greater depth due to surface processes associated with stress release, 

weathering, or the impacts of topography (Sutherland et al., 2017; Upton et al., 2017). Drilling in the 

vicinity of active faults remains the only way to evaluate the in-situ conditions at which earthquakes 

are generated and damage zones develop (Zoback et al., 2007). The DFDP-2B borehole was drilled in 

the hangingwall of the Alpine Fault in 2014 to a true vertical depth of 818 m beneath the Whataroa 

valley, central Southern Alps (Figure 1) as part of the Deep Fault Drilling Project (DFDP), to study the 

state of the crust near the Alpine Fault and better understand fault zone processes (Townend et al., 

2009). 

The interpretation of image logs in active fault zones has revealed important information about the 

structure, stress state, and permeability at depth (Pezard and Luthi, 1988; Barton et al., 1995; Brudy 

and Zoback, 1999; Daniel et al., 2004; Hickman and Zoback, 2004; Conin et al., 2014), that control the 

behavior of fault zones (e.g., Townend et al., 2009; Faulkner et al., 2010). In recent years, several rapid 

response drilling projects were carried out near active faults directly after large earthquakes to 

understand the post-earthquake state of a fault (Ito and Kiguchi, 2005, Nojima Fault, 1995 Kobe 

earthquake; Hung et al., 2009, Chelungpu Fault, 1999 Chi-chi earthquake; Lin et al., 2013, 2011 

Tohoku-Oki earthquake; Nie et al., 2013, 2008 Wenchuan earthquake). In contrast, relatively few 

observations have been made on faults that are late in their interseismic cycle. The Alpine Fault fails 

in large or great earthquakes every 291±23 yr and last ruptured in AD 1717 (Sutherland et al., 2007; 

Berryman et al., 2012; Cochran et al., 2017). We present interpretations of the image logs acquired in 

the DFDP-2B borehole, which provide new information about conditions in the hanging-wall of a plate 

boundary fault in its pre-earthquake state.  
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A series of borehole geophysical logs was acquired in DFDP-2B between 264-893 m (measured along 

the deviated borehole) in metamorphosed schists (Sutherland et al., 2015; Sutherland et al., 2017; Toy 

et al., 2017; Townend et al., 2017). Downhole geophysical logs record petrophysical parameters 

continuously along the borehole (e.g., Rider, 1996), providing an intermediate scale of observation 

between laboratory and seismic experiments (Boness and Zoback, 2006; Schijns et al., 2012; Jeppson 

and Tobin, 2015). Ultrasonic images of the borehole surface, commonly called borehole TeleViewer 

(BHTV) logs, provide images of the borehole wall surface oriented with respect to north, by measuring 

the travel-time and impedance of ultrasonic pulses sent and received by a piezoelectric transducer 

(Zemanek et al., 1970; Poppelreiter et al., 2010). BHTV log interpretation allows the detection of 

fabrics and structures intersecting the borehole (bedding, foliation, fractures, veins...) together with 

their orientation and morphological characteristics; stress-induced features when present; and of the 

relative ultrasonic reflectivity of the rock at the borehole wall. With only 1.4 m of non-oriented core 

recovered in DFDP-2B (Sutherland et al., 2015; Toy et al., 2017), the interpretation of the BHTV logs 

offer the best opportunity to interpret the nature of the geological structures (e.g. foliation planes 

and fractures) intersecting the borehole and to measure their orientations. 

[insert Figure 1] 

The metamorphic rock types that compose the variably mylonitized hangingwall of the Alpine Fault 

have so far been rarely described using image logs (see Burns, 1987; Barton and Zoback, 2002). Some 

coarse-grained gneissic lithologies have been studied (e.g., Wenning et al., 2017), but have largely 

been based on resistivity image logs, or on drill core descriptions (Paillet and Kapucu, 1989; Barton 

and Zoback, 2002; Williams and Johnson, 2004; Blake and Davatzes, 2012). For the Alpine Fault data 

described here, we therefore devised a specific BHTV log analysis method, based on a descriptive 

classification and integration with outcrop studies. The preliminary results presented in Townend et 

al. (2017) are thus herein largely expanded. 

In this paper, we measure and interpret the foliation and other structures in the hangingwall schists 

of the Alpine Fault using the high-resolution BHTV logs acquired in the DFDP-2B borehole. It is the first 

description of a continuous sequence where the intensity of deformation (mylonitization) increases 

as the Alpine Fault is approached. The flow of groundwater through these fracture systems results in 

large variations in temperature and fluid pressure adjacent to the Alpine Fault, that, in turn, affect 

rock deformation processes, slip and mineralization on geological faults, and hence the distribution of 

earthquakes (Sutherland et al., 2017). Our results, therefore, are significant for understanding the 

evolution of fracture systems adjacent to active faults, and hence for understanding earthquake 

processes. First, we present the geological settings of the DFDP-2B borehole. Second, we detail the 

BHTV logs acquisition, processing and analysis methods. Third, we present the results of the analysis 

of planar features (foliation planes and natural fractures), and the delineation of ultrasonic image 

facies. Finally, we interpret these ultrasonic image facies and planar features in the context of 

structures observed in existing nearby exposures of the Alpine Fault’s hangingwall, and discuss the 

implications for permeability in this fractured rock mass under a range of possible stresses. 

 

1.1 Geological setting 

The Alpine Fault is a ~850 km-long dextral transpressive fault which forms part of the plate boundary 

between the Pacific and Australian plates in the South Island of New Zealand (Sibson et al., 1981). The 

central Southern Alps section of the Alpine Fault has an average strike of ~055° (i.e., a dip direction 

of 145°) and dip of 45-60°SE to depths of ~15 km depth (see e.g., Sibson et al., 1981; Norris and 
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Cooper, 2007; Stern et al., 2007; Gillam et al., 2013; Feenstra et al., 2016). In the shallow subsurface,  

the Alpine Fault is segmented into a series of oblique-reverse (SE-dipping) and strike-slip (vertical)  

sections (Norris and Cooper, 2007).   

Rapid exhumation along the fault plane brings to the surface rocks that experienced mid-crustal  

conditions only 1-2 Myr ago (Norris et al., 1990; Little et al., 2005). The up to ~1 km-thick sequence of  

rocks that formed within the ductile shear zone of the Alpine Fault at mid to lower crustal depth  

comprises protomylonites, mylonites and ultramylonites. These variably ductilely deformed rocks  

were derived from a protolith of Torlesse Composite Terrane-derived Alpine Schists that are garnet  

grade (amphibolite facies) in the hangingwall immediately to the east of the Alpine Fault. Inside the  

Alpine mylonite zone, the rocks have accommodated an increasing intensity of Neogene finite shear  

strain with proximity to the principal slip zone of the Alpine Fault (Norris et al., 2007; Toy et al., 2012;  

Toy et al., 2017). The Alpine Schists are S>L tectonites, with strong planar foliations defined by  

millimeter- to centimeter-spaced quartz-feldspar and mica segregations. In the Alpine Schist outside  

of the mylonite zone, the mostly steeply dipping non-mylonitic foliation is commonly defined by  

crenulations (microfolds) of older fabrics, the hinges of which define a strong quartz rodding  

(intersection) lineation (Little et al., 2002; Norris et al., 2007; Toy et al., 2012). The Neogene  

mylonitization has resulted in an intensification and transposition of the older schist foliation.   

Ductilely deformed quartzo-feldspathic vein segregations sub-parallel to the mylonitic foliation are  

common, whereas discordant veins are rare.  The Neogene shearing overprint also introduced new,  

obliquely cross-cutting, millimeter to centimeter-spaced, extensional shear bands, particularly in  

protomylonites, that cut and offset the local foliation.  Closest to the Alpine Fault, the highest-strain  

ultramylonitic rocks may have relatively weakly expressed foliation due to pervasive grain-scale mixing  

of the very fine-grained constituent minerals (Toy et al., 2012).  

Foliations measured in two well-exposed outcrops of protomylonite and mylonite 30 km south of the  

Whataroa Valley along strike of the Alpine Fault (Figure 1) yield average orientations of 63°/143° at  

Tatare Stream (Gillam et al., 2013), and 34°/129° at Stony Creek (Little et al., 2016). In the Whataroa  

Valley, scarce exposures reveal a similar mylonitic and non-mylonitic foliation orientation (Little et al.,  

2002; Toy et al., 2017; and T.A. Little, unpublished data). In Alpine Schist drill-cores of the Amethyst  

Hydro Project ~20 km north of the Whataroa Valley, and ~0.7-2.0 km measured orthogonally from the  

principal slip zone of the Alpine Fault, non-mylonitic foliation and foliation-parallel fractures have an  

average orientation of 58°/164° (Williams et al., accepted). In outcrop, foliations in the Alpine  

mylonites typically dip SE at ~25-65° in at least approximate parallelism with the Alpine Fault —a  

pattern that is complicated by the strong segmentation of that fault in the near surface (Little et al.,  

2002; Toy et al., 2012; Gillam et al., 2013). In outcrops of the Alpine Schist and the Alpine mylonite  

zone, joints are commonly disposed in approximate orthogonality to the local foliation, and are at  

least in part related to the exhumation of the hangingwall (e.g., Holm et al., 1989; Hanson et al., 1990;  

Little et al., 2002; Toy et al., 2012; Gillam et al., 2013).   

Focal mechanism inversion of present-day seismicity (to depths of 8-10 km) yields a maximum  

horizontal compressive stress direction σ1 of 115±10° and predominantly strike-slip stress regime,  

hence with a sub-vertical intermediate principal stress direction (σ2; Boese et al., 2012).  Geological  

studies suggest that the intermediate and minimum principal paleo-stresses (σ2 and σ3) may be close  

in magnitude. In Alpine Schists exhumed from mid-crustal depths near Franz Josef Glacier, Holm et al.  

(1989) documented open, gently dipping, extension cracks and also mineralized veins  

(hydrofractures), that they inferred to record a fluid overpressured paleo-stress state associated with  

a vertical σ3 direction. Analysis of extensional shear bands in the Alpine mylonites revealed that the  

This article is protected by copyright. All rights reserved.



Manuscript in preparation for submission to G-Cubed 

5 
 

closeness in magnitude of σ2 and σ3 allowed the flipping between the two stress principal directions,  

presumably at a depth just below the brittle-ductile transition. 

1.2 Deep Fault Drilling Project (DFDP) 

The two boreholes drilled during the first phase of the DFDP programme at Gaunt Creek (DFDP-1A, 

100 m depth; DFDP-1B, 152 m depth) sampled shallow fault rocks in the central Alpine Fault (Figure 

1; Sutherland et al., 2012). Lithological (Toy et al., 2015; Schleicher et al., 2015), structural (Williams 

et al., 2016, 2017), physical (Boulton et al., 2012; Ikari et al., 2014; Ikari et al., 2015), and hydraulic 

(Carpenter et al., 2014) properties were obtained from drill cores, while wireline logging analysis and 

hydraulic measurements provided details of the structure and petrophysical properties of a 

geochemically distinct alteration zone (Sutherland et al., 2012; Townend et al., 2013). BHTV log 

interpretation in DFDP-1B indicates that centimeter-thick-scale features with orientations similar to 

that of the Alpine Fault (dip magnitude and direction of 43°/105°) predominate throughout the logged 

interval, with a subordinate set of north-dipping features (Townend et al., 2013).  

The second phase of DFDP (“DFDP-2”) was designed to intersect the Alpine Fault at ~1 km depth so 

that topographic effects on stress are diminished (Upton et al., 2017). DFDP-2B was drilled in 2014 in 

the Whataroa Valley to a depth of 893 m measured drillers’ depth along the borehole (corresponding 

to 818 m vertical depth), but did not reach its target due to technical difficulties (Sutherland et al., 

2015; all depths reported in this paper are reported according to drillers’ depth along the borehole; 

Figures 1 and 2).  The borehole trajectory was determined from integration of the continuously logged 

magnetic field orientations and instrument inclination from the BHTV logging tool itself. The borehole 

deviates from vertical steadily with depth from the ground surface to reach a stable inclination of 

~44° and an azimuth of ~340°. Cuttings and wireline logs, run between the bottom of the casing set 

in the basement rocks (264 m) and the bottom depth (893 m), sampled the hangingwall of the Alpine 

Fault in detail (Sutherland et al., 2017; Toy et al., 2017; Townend et al, 2017). The stratigraphy defined 

from cuttings analysis comprises Quaternary sedimentary formations from the surface to 239 m, then 

a succession of rocks that have accommodated an increasing creep shear strain with depth: namely 

Alpine Schist to 280 m, protomylonites to 852 m and mylonites to 893 m (Figure 2, Toy et al., 2017). 

Cuttings cannot reveal <1 m lithological variations because they are sampled only every 2 m and 

subject to mixing during their trip up the borehole. A total of 19.14 km of wireline logs were acquired 

during 18 sessions in the 264-889 m section of DFDP-2B, including 4.8 km of BHTV logs acquired during 

successive sessions (Sutherland et al., 2015; Townend et al., 2017). From 1 to 13 months after the end 

of drilling operations (latest measurement to date), a major change in equilibrium temperature 

gradient was measured at ~730 m via a distributed temperature sensing optical fiber installed behind 

the casing (Sutherland et al., 2017). Extensive passive and active seismic measurements using both 

this fiber optical cable and downhole geophone sensors also followed in order to better delineate the 

fault (Constantinou et al., 2016; Hall et al., 2017).  

[insert Figure 2] 

2. Borehole Televiewer (BHTV) Log Processing and Analysis Methods 

2.1 BHTV Logging and Processing 

BHTV tools emit and receive high frequency, ultrasonic pulses (generally between 500 kHz and 2 MHz) 

generated by an ultrasonic transducer. This transducer is either positioned in a 360° rotating head, or 

fixed along the downhole tool axis, emitting pulses in the direction of a 45° inclined rotating mirror 

located below the transducer, as in the case of the ABI® tool from ALT used in DFDP-2. The processing 

of the ultrasonic pulses reflected from the borehole surface generate two oriented maps of the inside 
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surface of the borehole, one with travel-time and the other with the reflected pulse amplitude 

(Zemanek et al., 1970; Poppelreiter et al., 2010). The pulse’s two-way travel-time measures the 

distance between the borehole wall and the tool, and hence estimates the borehole's shape and 

diameter. The ultrasonic wave amplitude depends on relative variations in the ultrasonic impedance 

and roughness of the borehole wall, which thus varies with mineralogy, texture and fracturing (e.g., 

Davatzes et al., 2010). Log acquisition and processing are described in Appendix 1. All BHTV images 

and interpreted feature orientations presented in this paper are with reference to geographic north 

from triaxial flux-gate magnetometers contained within the tool. The borehole deviation has been 

taken into account during dip magnitude and dip direction computations. 

An estimation of the borehole diameter (“caliper”) is required for the calculation of the orientation of 

planar features detected in BHTV logs (Zemanek et al., 1970) and for the interpretation of other well 

logs (in particular the resistivity logs; Remaud, 2015). Discrete increases in borehole diameter are good 

indicators of individual fractures or fractured zones, while larger-scale variations can indicate larger 

fractured zones or changes between harder and softer rocks (e.g., Massiot et al., 2015). Regretfully, a 

three-arm mechanical caliper ran in DFDP-2B did not provide reliable measurements due to borehole 

inclination and the tool collapsing under its own weight. The procedures used to estimate the 

borehole diameter from the BHTV travel-time, taking into account the variable speed of sound in the 

drilling mud, is presented in Appendix 2. 

2.2 BHTV Log Quality 

The BHTV logs were of variable quality due to mud attenuation, and drilling and logging tool effects 

(see Supplementary Information; Lofts and Bourke, 1999). Identifying image artefacts and their causes 

is a critical step in the analysis of ultrasonic image facies, as well as of feature orientation and density 

variations with depth. The ability to delineate planar features is diminished in areas where BHTV 

images do not cover the full circumference, and this study is based on a compilation of the best quality 

logs for the 264-888 m interval (Appendix 1). 

Image quality is ranked within three levels primarily defined by borehole azimuthal coverage: bad, 

poor and good image quality correspond to <25%, 25-50% and >50% coverage respectively. The 

presence of artefacts further decreases the quality ranking in places. Overall, the image quality is good 

with small intervals of bad quality in the 260-558 m interval (Figure 3). In the 558-598 m interval, 

image quality is bad with only small portions of the borehole observable. The 598-893 m interval is 

characterized by intercalation of thin (<1 m) zones of bad to poor quality within otherwise zones of 

good image quality (Figure 3). These thin intervals of poorer quality likely reflect spalling from the 

borehole wall either due to drilling or the presence of intensely fractured zones. Particular attention 

will be given to the 476-545 m interval where the image quality is best.  

[insert Figure 3 here] 

2.3 Characterization of Planar Features 

Planar features that have a contrast in ultrasonic impedance - and in cases travel-time - with the 

surrounding formation appear as a sinusoid on unwrapped BHTV logs (Zemanek et al., 1970). The 

BHTV log alone cannot differentiate between open or closed fractures (used here in a general term, 

i.e. including faults), veins, and mineral segregations forming part of the foliation (mica and quartz-

rich layers). Thus, we use a descriptive classification system of the planar features in terms of contrast, 

morphology, planarity and thickness (Figure 4).  

[insert Figure 4 here] 
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The contrast of ultrasonic amplitude of planar features with respect to background observed on the 

amplitude images classifies feature appearance into three types: A, B and C (Table 1, Figure 4). Type 

A features are strongly contrasting. When of low ultrasonic amplitude, they are labelled A-L, or A-LT 

in the case where they are also visible on the travel-time image and commonly associated with signal 

loss. Schmitt (1993) interpreted A-LT fractures as open in a granitic pluton, but Massiot et al. (2017) 

showed that this is not always the case in hydrothermally-altered volcanic rocks. When of high 

amplitude, they were never seen on the travel-time image, and are labelled A-H. Type B and C are 

moderately and weakly contrasted, respectively. Type B and C features are sampled by a 

representative sinusoid every 10-30 cm where they belong to a series of sub-parallel features. 

The morphology of each feature is described in terms of its continuity around the borehole in 5 

categories (Table 2): continuous, discontinuous, partial, truncated and obscured, the latter linked to 

poor image quality. Planarity is classified in two categories: planar and near-planar, according to how 

closely they fit a sinusoid. The apparent thickness of each type A feature is measured on the image 

and converted to the true thickness measured orthogonally to the feature (Barton et al., 1992; Massiot 

et al., 2015). The thickness of type B and C features is too small to be evaluated. While the smallest 

observed apparent thickness is 2 mm (the BHTV log resolution), the conversion from apparent to 

feature-normal thickness reduces the thickness value, which can thus become lower than the BHTV 

log resolution. 

[insert Table 1 here] 

[insert Table 2 here] 

The analysis of feature orientations is made on a weighted dataset which compensates for the under-

sampling of features sub-parallel to the borehole (Terzaghi, 1965; Yow, 1987; Massiot et al., 2015). 

Because of the steadily increase in borehole deviation, the orientation of features sub-parallel to the 

borehole most affected by the undersampling varies with depth, as presented in Figure 5. 

No stress-induced borehole failures (as described by e.g. Zoback et al., 2003; Schmitt et al., 2012; 

Massiot et al., 2015), were observed in DFDP-2B BHTV logs with confidence. 

2.4 Ultrasonic Image Facies Delineation 

Variations in the gross appearance of BHTV logs can be observed on the statically normalized images. 

The combination of an ultrasonic amplitude range (low/high), overall appearance (grainy/smooth), 

and caliper from the travel-time image, defines ultrasonic image facies. Drilling and logging artefacts 

account for a number of these variations (Supplementary Information), and have been clearly isolated.  

3. Results 

3.1 Planar Feature Orientation 

The 2242 planar features identified on the BHTV log have three dominant orientations, which we here 

refer to as feature sets (Figure 5, Table 3). Feature set 1 (FS1), which contains two thirds of the 

features, has a constant orientation over the entire logged interval, with a mean dip and dip direction 

of 60°/145° and is very clustered (resultant vector length of 0.97; Figure 5, Table 3; Priest, 1993). This 

set comprises the foliation and will be discussed in Section 4.1. The delineation of the two other 

feature sets is based primarily on their orientation and coincides with their occurrence either above 

or below ~500 m depth (Section 3.2; Figure 5). Feature set 2 (FS2) contains NW-SE-striking features 

steeply dipping (>50°) to both SW and NE directions, with a 89°/047° mean orientation (Figure 5a). 

Feature set 3 (FS3) contains gently dipping (<50°) features of various dip direction, and a 15°/037° 
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mean orientation (Figure 5b). FS2 and FS3 are less clustered than FS1 (resultant vector lengths of 0.84  

and 0.87, respectively).   

[insert Figure 5 here]  

 [insert Table 3 here]  

3.2 Planar Feature Density  

The feature density is analyzed using a moving average (10 m window size; Figures 3g-i). The  

calculations have been made on the raw dataset, so that linear fracture counts can be read off the  

graph. Feature densities calculated using the dataset corrected for the under sampling of fractures  

sub-parallel to the borehole (not presented here for clarity) display the same trends. The BHTV log  

quality strongly influences the feature density: zones of bad quality have very few recognized features  

(see grey shaded zones in Figures 3g-i). While poor log quality may hinder the detection of some  

features, most type A features are still detectable in these zones. The density analysis is reliable within  

zones of good image quality but is also made with caution in zones of poor image quality. Type B  

features are mainly located within the 490-550 m interval, a zone of good image quality where the  

ultrasonic impedance contrast is generally better than in other zones, and are considered to be  

geologically similar to type C features.  

Overall, the feature density is 3.6 m-1 average and up to 7.2 m-1 at 620 and 660 m. Figure 3 highlights  

the transition zone between depths at which FS2 and FS3 predominate. While FS2 and FS3 features  

are present throughout the logged interval, FS2 is more frequent than FS3 in the 260-510 m interval,  

with a high-density peak at 480-500 m, and FS3 is more frequent than FS2 in the 520-888 m interval.  

The density profiles of the whole dataset and FS1 features alone are very similar, with an average  

density of 2.4 m-1 (Figure 3g). FS1 feature density is low (0.3-1.6 m-1) at 780-855 m.   

3.3 Relationships Between Planar Feature Appearance, Morphology and Orientation  

Type A-LT features have the same distribution of orientations as the overall dataset, which is expected  

as they represent 70% of the dataset (Table 3). The three type A-H features are of FS1 orientation, and  

of partial or obscured morphology. Other features of high ultrasonic amplitude are observed in various  

locations but are not reported because they span <25% of the borehole perimeter. Nearly all type B  

and C features are of FS1 orientation.  

The majority of features are of continuous morphology (Table 3). Partial features are dominantly of  

FS2 orientation, with a few in the FS1 set. The truncated features are dominantly of FS2 and FS3  

orientations and terminate on features of FS1 orientation, although the contrary is also observed. The  

rare features with near-planar morphologies are found in all three fracture sets (Table 3).  

The detection of near-planar, partial and truncated features requires a good image quality. Poorer  

image quality below 545 m likely hinders their detection. It is thus possible that features of these  

morphologies and FS3 orientation below 545 m occur more frequently than what is detected on the  

BHTV log.  

3.4 Planar Feature Thickness  

After correcting for the intersection angle between fractures and borehole, the fracture-normal  

thickness of type A features ranges between 0.5-32 mm with a mean of 4.2 mm; only 10% of features  

have thickness >7 mm. Type A-LT features are thicker than type A-L's (mean thickness of 4.5 and  

2.8 mm, respectively). The three type A-H features are relatively thick (3.2; 6.5 and 7 mm) compared  

to other feature types. There is no clear correlation between feature orientation and thickness. The  
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1% of features >15 mm occur throughout the logged interval, though are more numerous between 

476-540 m and 812-852 m. The thickest feature is located at 520 m, belongs to FS1, and is associated 

with a slight caliper increase and zone of low ultrasonic amplitude (see Section 3.5).  

3.5 Low Amplitude Zones and Ultrasonic Image Facies 

[insert Figure 6 here] 

Low ultrasonic amplitude zones that contain type A features, and where low ultrasonic amplitude is 

also observed between the type A features, occur in eleven locations between 260-545 m (Figures 3 

and 6). Low ultrasonic amplitude zones are 0.5-3 m-thick, have brecciated textures (with clasts being 

a few centimeter across), contain numerous type A features, and often coincide with low resistivity 

(deep and shallow), and caliper increases (Figure 6). Two configurations of these zones are observed: 

(1) pervasive low ultrasonic amplitudes associated with one or more FS1 features, and (2) low 

ultrasonic amplitudes confined between two FS1 features. The absence of low ultrasonic amplitude 

zones below 545 m is likely due to the poorer image quality preventing their observation, though some 

thin (0.5-3 m) zones of bad image quality may represent low ultrasonic amplitude zones (see Section 

4.4). 

The 490-545 m interval is of particularly good image quality with few artefacts. Within this interval, 

three ultrasonic image facies (UAF) separated by gradational boundaries are recognized (Figure 6): 

1. UAF1 has low caliper values (220-225 mm, drilled with a drill-bit size of 215.9 mm), high 

ultrasonic amplitude, and smooth borehole walls, as indicated by the uniform travel-time 

image. UAF1 appears differently when drilled by different drill bits: the amplitude image 

appears more homogeneous over the intervals drilled with the PDC-type drill-bit than with 

the tricone IADC-type bit, as seen on overlapping sections of logs (see Supplementary 

Information). 

2. UAF2 has low caliper values (220-225 mm) and moderate ultrasonic amplitude; the amplitude 

image has a texture that appears thinly foliated.  

3. UAF3 has higher caliper values (>225 mm) and low ultrasonic amplitude which appears grainy.  

4. Discussion 

4.1 Feature Set 1 (FS1): Foliation Planes and Foliation-parallel Fractures 

FS1 features, oriented 60°/145° on average, are interpreted to be foliation planes, deformed foliation-

parallel veins, and/or other foliation-parallel fractures. Indeed, FS1 feature orientations are similar to 

foliation orientationsmeasured on scarce exposures in the Whataroa valley (Figures 1-2; Little et al., 

2002; Toy et al., 2017), on more extensive outcrops at Tatare Stream (Gillam et al., 2013) and the 

Amethyst hydro-project (Williams et al., accepted). The progressive deviation of the borehole with 

depth, to an orientation nearly orthogonal to FS1, is consistent with the effects of drilling through a 

layered rock mass causing mechanical anisotropy (Misra et al., 2015). 

The appearance of the FS1 features, which comprises nearly all of type B and C features, have 

morphological characteristics consistent with foliation planes. The hangingwall protolith outcropping 

at Whataroa is strongly foliated (Figure 7a-b) with millimeter-to-centimeter-spaced laminae of quartz-

feldspar and mica (Little et al., 2002; Toy et al., 2015). The wall rock drill core recovered at 476 m 

reveals 2-4 mm-spaced foliation overprinted by brittle fractures generally at low angle to the foliation; 

some of these fractures may be drilling-induced (Toy et al., 2017). Type A features that are part of FS1 

are interpreted as foliation-parallel, cm-scale mineral segregations (micaceous or quartz-rich layers), 

and foliation-parallel veins or fractures. The various degrees of ultrasonic contrast of FS1 features 
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likely relate to changes in mineralogy, or the strength of each layer, which alters the roughness of the  

borehole wall. The type A-LT features have a high roughness at the borehole wall, and may thus  

represent slightly excavated mica-rich foliation layers or open fractures. The three type A-H partial  

features are interpreted to be short quartz veins intercalated with the foliation, as commonly  

observed in outcrops (Holm et al., 1989; Little et al., 2002) and in the drill core (Toy et al., 2017).  

Although the transition between protomylonite and mylonite is not clear on the BHTV log, the  

appearance of the foliation on the BHTV image from the lower interval (>810 m) of DFDP-2B is similar  

to that in DFDP-1B.  

[insert Figure 7 here]  

4.2 Foliation Orientation: Implications for the Alpine Fault Geometry  

Structural studies on outcrops reveal that the active Alpine Fault plane bounds a very high-strain  

mylonite zone characterized by finite simple shear strains exceeding 120 across most of its <300m  

width (Norris and Cooper, 2003; Toy et al., 2013). At such high finite strains, the mylonitic foliation is  

expected to become essentially parallel to the shear zone boundary (Toy et al., 2013). Previous  

outcrop studies in the central Southern Alps (including in and near the Whataroa Valley) indicate that  

the mean attitude of mylonitic foliation within ~1 km of the Alpine Fault plane is essentially parallel  

to the Alpine Fault, although in detail such parallelism does not exist everywhere at shorter spatial  

scales, for example adjacent to zones of duplexing in the mylonitic zone (Norris and Cooper, 1997).  

Along-strike of the fault, the mean dip angle of the foliation varies between ~30 and 60° within a few  

kilometers (Little et al., 2016). These changes seem to correlate with along-strike changes in the near- 

surface segmentation of the fault, which is characterized by shallower oblique thrust segments; and  

steeper, linking strike-slip segments, which are inferred to merge at depth into a master fault zone  

(Norris and Cooper, 1995; Norris and Cooper, 1997; Barth et al., 2012). At the (outcrop) scale of  

observation, the local orientation of the mylonitic foliation is more variable as there it is commonly  

complicated by late-stage kinking, thrust duplexing, further brittle deformation, which locally  

steepens the dip; and gravitational collapse of the scarp, which decreases the dip (e.g., Norris and  

Cooper, 1997). A typical example of this 1-10 m outcrop-scale variability and near-surface  

segmentation is at Gaunt Creek, where in outcrop the Alpine Fault plane is 43°/105° and the first 100  

m structural thickness of the hangingwall contains a wide variety of foliation attitudes/orientations  

within packages bounded by late listric faults (Cooper and Norris, 1994). There, the local dip of the  

fault plane is also the dominant feature orientation in DFDP-1B BHTV (Townend et al., 2013; Figure  

5d). This supports the argument that except for the local and outcrop scale discordances, the mylonitic  

foliation and Alpine Fault plane are approximately parallel to one another. Thus, the 20° lower dip  

magnitude and 35° dip direction difference between the dominant feature orientations in borehole  

DFDP-2B (i.e., FS1) versus in DFDP-1B (Figure 5) are not unexpected.  

In the DFDP-2B borehole, we have documented a constant foliation orientation with an average dip  

of 60° toward the SE (dip direction 145°) throughout the protomylonitic to mylonitic hangingwall of  

the Alpine Fault. This result is significant. About 30 km SW of the DFDP-2B site, in Tatare Stream, a  

similarly uniform foliation attitude of ~60° was observed in protomylonitic to mylonitic outcrops  

(Gillam et al., 2013). Both Tatare Stream and the DFDP-2B borehole in Whataroa Valley encompass  

large structural data sets, sample the hangingwall's mylonite zone, and both are located near the SW  

end of an oblique-thrust segment of the Alpine Fault, just east of where the fault transitions  

westwardly into a strike-slip segment. In the fault segmentation model of Norris and Cooper (1997),  

and confirmed by recent 3-D mechanical modeling (Upton et al., 2017), such a position is predicted to  

(uniquely) expose a part of the Alpine Fault that is coplanar with the fault plane at depth that lies  

below the near-surface zone of segmentation. In Tatare Stream, Gillam et al. (2013) interpreted the  
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uniformity of foliation dip as indicating that the mean SE dip of the Alpine Fault at depth in the central  

Southern Alps (also its ductile shear zone) was ~60° (see also Little et al., 2005). Based on the  

assumption that the mean foliation is parallel to the fault plane, a similar interpretation is made here  

for the DFDP-2B site in the Whataroa Valley on the basis of the BHTV data (Figure 2), though the  

confirmation of this configuration awaits further drilling.  

4.3 FS2 and FS3: Joints Formed During Exhumation, and Inherited Hydrofractures  

The different morphologies of features of FS1 and FS2/FS3 orientations observed in the BHTV log  

supports the interpretation that the latter structures are joints, i.e. structures propagating in opening  

mode I in a direction orthogonal to σ3, susceptible to having terminations on hard, compliant foliation  

layers. Most truncated features have FS2/FS3 orientations and are truncated by features of FS1  

orientation, while the opposite (features of FS1 orientation stopping either on FS2's or FS3's) is rarely  

observed (Table 3). Situations in which features of the same set terminate on each other also occur,  

albeit not commonly. While it is possible that the truncated features were formed by separation and  

slip on the truncating feature (thus indicating a fault), it would have required a large offset (>0.1 m)  

to not be detected, which is unlikely for all 67 truncated features. Poor image quality hinders the  

identification of partial features (true or truncated) in the lower part of the logged interval where FS3  

is more common, so the intersection configurations of FS3 cannot be described in as much detail as  

for FS2.  

Based on outcrop observation of joints of similar orientation, FS2 features (sub-vertical and striking  

NW-SE) are interpreted as joints, probably Neogene, and formed during exhumation. Extension  

fractures striking NW-SE were documented by Norris and Cooper (1986) in glaciated scoured surfaces  

in the nearby Franz Josef and Fox valleys, where they were interpreted to have slipped as confining  

pressure was relieved during glacial unloading in the 1900s. Their kinematic analysis yielded  

shortening directions consistent with geodetic and micro-earthquake studies, hence representative of  

tectonic stresses rather than locally-induced stresses. NW-SE subvertical extension features were also  

documented by Hanson et al. (1990). They often form at 90° to the foliation and terminate against  

foliation planes, which is observed in the BHTV log with FS2 features truncated on foliation planes and  

foliation-parallel fractures, and FS2 oriented 90° from FS1 (Figures 5; 7a). In outcrop, such exhumation- 

related joints are very straight, generally not mineralized, and have lengths of up to tens of meters,  

which may be the case for FS2 joints, although it is not possible to confirm it solely from borehole  

data.  

FS3 features (gently dipping) are interpreted as inherited hydrofractures or veins. Such gently dipping  

structures are observed in outcrop in the central Southern Alps (Figure 7b-c). Wightman and Little  

(2007) documented a similar attitude for variably infilled, opening-mode veins in the upper Franz Josef  

Glacier Valley. These are variably infilled by hydrothermal quartz+calcite+chlorite±adularia (see also  

Craw, 1988 and Craw, 1997).   

The change in the proportions of FS2 and FS3 joints that takes place at 480-540 m (Figure 3), with FS2  

(sub-vertical) joints more common above this interval and FS3 (gently dipping) inherited  

hydrofractures more common below, is unlikely to be an artefact. Indeed, the orientation of FS1  

features is constant throughout the logged interval, ruling out a significant error of the caliper log (and  

hence in the calculation of feature orientations); both FS2 and FS3 are present throughout the logged  

interval; and the change of proportion of FS2 and FS3 occurs within a zone of moderate to good image  

quality. The top of this transition zone at 470-480 m is also conspicuous in other wireline logs  

(Sutherland et al., 2015; Townend et al.,2017). Resistivity values are lower, the full-waveform sonic  

log shows a lower amplitude, the gamma-ray values are lower in the 330-475 m interval than in the  
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475-888 m interval (Figure 3), and there is a large temperature anomaly at 478 m (Janku-Capova et  

al., submitted). These log variations reflect lithological or in-situ fluid property changes (Rider, 1996;  

Li et al., 2014). The cause for the change of proportion between FS2 and FS3 at ~500 m is not clear.  

Joints of FS2 orientation may have a higher ultrasonic impedance contrast with the background  

formation in the shallow parts of the borehole, thus favoring their identification, while the converse  

may happen to FS3. However, if this were the case, a more gradual change of proportion would be  

expected, and would not occur at the same depth as the other wireline log changes. Alternatively,  

local changes of in-situ stresses or pore pressure at deeper depth than the DFDP-2B may have favored  

the formation of gently dipping hydrofractures in certain zones subsequently exhumed. The  

preferential near-surface location of sub-vertical extension fractures may also be related to the  

remnant effects of deglaciation and rebound which favors NW-SE-striking extension near surface as  

described by Norris and Cooper (1986), in a stress regime where σ2≈σ3. Future research dedicated to  

the examination of the relationships between exhumation-related joints and inherited hydrofractures  

in outcrops may help to explain these observations.  

BHTV log interpretation in DFDP-1B borehole reveals the presence of a secondary feature set dipping  

moderately north, sub-perpendicular to the dominant orientation that we suggest represents the  

foliation (Figure 5d; Townend et al., 2013). This configuration is similar to the FS2 joints striking sub- 

perpendicular to FS1 (foliation) observed in the DFDP-2B borehole. A comparison of BHTV logs and  

cores in a future borehole drilled at a similar distance to the Alpine Fault would provide further  

information regarding the nature (mineralization, opening, generation) of FS2 and FS3 features in  

DFDP-2B.  

4.4 Subsidiary Fault Zones in the Alpine Fault Hangingwall  

We interpret the low-amplitude zones with brecciated structures described in Section 3.5 to be  

damage zones associated with subsidiary faults of the Alpine Fault. Similar patterns have been  

observed on BHTV logs in DFDP-1B, and are correlated to cataclasite zones in cores (Williams, 2017;  

Williams et al.,accepted). Cataclastic shears and gouge-filled zones occur throughout the 1 km-wide  

fault zone (Norris and Cooper, 2007). Daniel et al. (2004) reported analogous bed-contained  

brecciated layers inferred from resistivity and BHTV image logs, and correlated to cores in the AIG10  

borehole, Gulf of Corinth. In DFDP-2B, clay minerals formed during pervasive alteration from  

hydrothermal fluids circulating along those type A fractures which, in these zones, would be  

permeable, may cause the diffuse low ultrasonic amplitudes, as observed in the Amethyst Hydro- 

project tunnel (Cox and Sutherland, 2007; Figure 1) and at the Soultz geothermal field (France; Genter  

and Traineau, 1996).   

Pelitic- or mica-rich zones could also appear as diffuse low ultrasonic amplitudes, but the presence of  

type A features, the limited depth interval within which they occur, and the brecciated appearance,  

favors the interpretation of these zones as brecciated fault zones. The low ultrasonic amplitude zones  

contained between FS1 features may represent foliation-parallel cataclasite zones along which fluid  

circulation is contained between two specific fracture planes, while those not contained between  

specific features may result from the percolation of fluids from one or several fractures. The inference  

that subsidiary faults occur in the hangingwall is consistent with the observation of subsidiary faults  

in outcrops to the south-east of the main Alpine Fault plane (Hanson et al., 1990; Cox and Sutherland,  

2007; Norris and Cooper, 2007; Williams, 2017; Williams et al., accepted). If slip occurs on these  

structures, they may also generate small earthquakes (Toy et al., 2011; Boese et al., 2012;  

Bourguignon et al., 2015; Chamberlain et al., 2017).  

[insert Figure 8 here]  

This article is protected by copyright. All rights reserved.



Manuscript in preparation for submission to G-Cubed 

13 
 

No significant feature could be identified on the BHTV log at 730 m, where a sharp decrease of static 

temperature gradient suggests a change of hydrological regime, associated with drilling mud losses 

while drilling (Figure 8; Sutherland et al., 2015, Sutherland et al., 2017). Measurements made following 

drilling of the DFDP-1A and DFDP-1B boreholes demonstrated that a few centimeters of clay gouge is 

sufficient to create an impermeable barrier to flow, with a difference of three orders of magnitude in 

permeability measured either side of the principal slip zone of the Alpine Fault (Sutherland et al., 

2012). Similar observations have been made at other fault drilling projects (e.g., Li et al., 2013). It is 

possible that a centimeter-thick, clay gouge layer occurs at ~730 m in DFDP-2B but is not resolved on 

the BHTV logs. Zones of poor BHTV log quality at 728 and 732 m may represent the damage zone of a 

low-permeability fault responsible for this major temperature gradient change (Figure 8). Similarly, 

the lack of low ultrasonic amplitude zones below 558 m is likely caused by the overall poorer BHTV log 

quality rather than their absence in the rock. 

4.5 Lithological Variability Within the Hangingwall of the Alpine Fault 

Hard formations, and some minerals including quartz or calcite, tend to have lower caliper values and 

higher ultrasonic amplitude than softer formations or clay and micas minerals, due to their higher 

ultrasonic impedance and lower roughness at the borehole wall (Zemanek et al., 1970; Massiot et al., 

2015). We interpret the nature of the three ultrasonic image facies delineated in the 490-545 m 

interval (Section 3.5) based on these relationships.  

The ultrasonic image facies UAF1 and UAF2 are inferred to be hard, quartz-rich formations as indicated 

by their high ultrasonic amplitude and low caliper, with UAF2 appearing more thinly foliated or grainy 

than UAF1. This inference is also supported by the presence of hard layers which wore out the drill 

bits and slowed down the drilling progress in the 519-524 m interval and at 546.8 m, both within UAF1. 

The rate of penetration of the drill bit is high between 527-543 m, similar to the interval where UAF2 

occurs, suggesting that there are fewer hard quartz veins (Figure 6). Thus, the lithology corresponding 

to UAF1 may be harder and contain more, thicker, or more continuous quartz veins than UAF2. The 

gamma-ray log does not provide meaningful information at this depth. A very low gamma-ray and 

high deep resistivity anomaly is observed on multiple logging runs at 504-505.5 m, which could 

indicate a low-mica or low-clay zone, and conversely a high-quartz zone. This interval has a high 

ultrasonic amplitude and low caliper, similar to the characteristic of UAF1.  

UAF3 (493-498.5 m) is a softer formation with higher borehole wall roughness than UAF1/UAF2, and 

may contain more mica and/or clay minerals as indicated by the lower ultrasonic amplitude. The UAF3 

interval is associated with a low resistivity which may be caused by a clay- or mica-rich formation, 

and/or by a higher fluid content. The latter is consistent with the high density of type A features 

observed in UAF3 which may be permeable fractures.  

While we were able to describe ultrasonic image facies in detail only on a 55 m-long interval of the 

logged interval, image log facies highlight local variations in quartz:mica content or in alteration which 

cannot be identified from cuttings alone, sampled only every 2 m and subject to mixing within the 

borehole. The possible variations of mineralogy, rock hardness or layering style that we have 

interpreted here may cause 1-10 m-scale variations in formation strength and anisotropy along the 

borehole. These variations likely occur in other locations in the hangingwall of the Alpine Fault and 

may also locally impact the fracture distribution, as observed in outcrops (Williams et al.,accepted). 

4.6 Potential for Fracture Slip in the Hangingwall of the Alpine Fault 

The occurrence of joints of both FS2 and FS3 orientations is consistent with a stress regime at the time 

of crack formation during exhumation in which the intermediate and minimum compressive stresses 
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(σ2 and σ3, respectively) were of similar magnitudes. This would facilitate a switch from sub-vertical σ2  

(a strike-slip regime, as determined from focal mechanism inversions; Boese et al., 2012) to sub- 

vertical σ3 and NE-SW-trending σ2 (a reverse faulting regime), locally and/or transiently. Geological  

observations along the central Alpine Fault suggest such a stress configuration prevails near the  

brittle-ductile transition (Little et al., 2016); at ~3 km depth (Holm et al., 1989); and near the surface  

due to late-stage exhumation and deglaciation (Norris and Copper, 1986; Hanson et al., 1990).   

Switching between σ2 and σ3 has previously been interpreted to be possibly related to a post-seismic  

transient stress rotations, or stress perturbations close to active faults (Little et al., 2016). In addition,  

recent numerical stress modeling of topographic and tectonic stresses shows that σ2 is currently  

rotated by topographic relief from near-vertical under the ridges to near-horizontal beneath valleys  

crossing the Alpine fault (such as the Whataroa Valley), resulting in a thrust stress regime rather than  

oblique strike-slip (Figure 9; Upton et al., 2017). In the models, tectonic stresses in the hanging wall  

combined with slope-generated stresses have formed a reverse fault extending c. 10 km along the  

western Whataroa valley, near the location of DFDP-2B.   

To examine the present-day proximity to shear failure of fractures observed in DFDP-2B, we have  

estimated stress magnitudes assuming both strike-slip and reverse stress regimes at frictional-failure  

equilibrium (Zoback and Townend, 2001). We adopt a low stress ratio of φ=(σ2–σ3)/(σ1–σ3)=0.15 and  

a horizontal orientation with a trend of 115° for the σ1 axis. The frictional-failure criterion can be  

written as  

𝑆1−𝑃𝑝

𝑆3−𝑃𝑝
=  

σ1

σ3
= (√μ2 + 1 + μ)

2
          (1)  

where  

Pp=λSv = λ ρgz            (2)  

Here μ is the coefficient of friction, Pp the pore fluid pressure, λ the pore fluid factor, Sv the vertical  

stress, g the gravitational acceleration, ρ the mean rock density, and z the depth. The Mohr circles are  

presented after solving for the three principal stresses using μ=0.75, λ=0.4, ρ=2700 kg/m3 and z=1 km  

(Figure 9). The resulting stress magnitudes are consistent with those estimated by Upton et al. (2017).  

While the σ1 orientation adopted in this simple model is that computed for seismogenic depths (Boese  

et al., 2012), numerical models reveal a similar orientation of σ1  in the Whataroa valley (Upton et al.,  

2017). The precise determination of the stress tensor in DFDP-2B awaits further high-resolution  

modeling.  

[insert Figure 9 here]  

In each of the two stress configurations considered, the foliation and foliation-parallel FS1 features,  

including the Alpine Fault plane, are not well-oriented for shear failure. On the other hand, sub-vertical  

joints (FS2) are close to failure in the strike-slip regime, and gently dipping (FS3) in the reverse regime.  

In addition, principal stress directions are not purely vertical and horizontal (Boese et al., 2012; Little  

et al., 2016; Upton et al., 2017), so the spread around the mean of fracture orientations will cause  

different fractures to be close to failure depending on the stress tensor at the precise fracture location.  

In other words, the subsidiary FS2 and FS3 fracture orientations observed in the DFDP-2B borehole  

combined with low ambient stress ratios thus provide pervasive fractures subject to frictional failure  

under the combined local effects of topographic and tectonic loading. High relief locally enhances the  

potential for switching between σ2 and σ3 (Upton et al., 2017).  
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4.7 Implications for Fracture Permeability Adjacent to a Plate Boundary Fault with High  

Topography  

An exhaustive analysis of the relationship between fracture orientation and permeability is beyond  

the scope of this study, but inferences can be made on potential fluid flow directions in the  

hangingwall of the Alpine Fault. Regrettably, it was not possible to carry out hydraulic packer testing  

to estimate formation permeability (Sutherland et al., 2015).  

Among the various features, type A-LT features are the most likely to be permeable as they locally  

increase roughness at the borehole wall, though it is not known how far these fractures propagate  

into the formation. The zones of low ultrasonic amplitude interpreted to be subsidiary faults with  

damage zones, some of them confined within foliation planes and hence sub-parallel to the Alpine  

Fault (Section 4.4), are good candidates for contributing to permeability in the hangingwall, although  

they may be partially clogged with clays. A similar interpretation was made from field and DFDP-1B  

core sample XRD analyses (Williams et al., 2017). The meter-scale zones of poor BHTV log quality  

between 545 and 888 m may represent densely fractured zones composed from structures of all  

feature sets (FS1-3) and induce spalling from the borehole wall, and thus may also be permeable.   

[insert Figure 10 here]  

The pervasive occurrence of FS1 fractures along the borehole, and the change in relative abundance  

of FS2 and FS3 at 480-550 m, define the fracture system geometry through which fluids circulate in  

the hangingwall of the Alpine Fault in the Whataroa Valley. At least some of the foliation-parallel  

fractures (FS1), exhumation-related joints (FS2), and inherited hydrofractures (FS3), are not fully  

sealed and likely permeable, as seen by temperature gradient and resistivity changes (Figure 10).  

Foliation-parallel fractures alone would not constitute a well-connected fracture system, but their  

intersection with fractures of FS2 and FS3 orientations, at high angles to the foliation, would provide  

the necessary connectivity. The truncation of fractures of FS2 and FS3 orientations on foliation planes  

are an example of such connections and in places are associated with temperature anomalies (Figure  

10).   

We infer that flow dominantly occurs within the foliation plane orientation (FS1) based on the  

dominant orientation of the subsidiary faults observed on the BHTV log, so the direction of minimum  

permeability is normal to this plane. At the DFDP-2B site, FS2 fractures which predominate above 500  

m may connect basement foliation planes vertically with the Quaternary sediments. FS3 fractures,  

which predominate below 500 m, favor lateral (sub-horizontal) connectivity. The intersections of  

fracture set orientations, potentially forming pipe-like conduits, provides an estimate of the direction  

of maximum permeability (trend/plunge 135°/60° for FS1/FS2; 063°/13° for FS1/FS3; and to a limited  

extent 317°/03° for FS2/FS3). The direction of intermediate permeability is normal to the plane  

defined by maximum and minimum directions. It is, therefore, possible to estimate the three principal  

directions of the anisotropic permeability tensor.   

Large-scale permeability anisotropy caused by the fracture system geometry in the foliated rock mass  

has also been observed at core scale in the DFDP-1 borehole (Allen et al., 2017), where anisotropy  

increases away from the principal slip zones. Future work will address which of the >2200 features  

interpreted from DFDP-2B BHTV logs are permeable, based on analysis of independent data  

(resistivity, temperature and sonic logs; Janku-Capova et al., submitted). This may further constrain  

the fracture permeability tensor, but hydraulic tests are required to determine absolute values of  

permeability.  
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In addition, re-activation of fractures of FS2 and FS3 orientations, under a strike-slip or reverse faulting 

regime, respectively, would likely increase their hydraulic conductivity (Barton et al., 1995; Townend 

& Zoback, 2000). Combined with the connection with foliation-parallel fractures, the fracture 

architecture observed in borehole DFDP-2B supports the concept of an outer damage zone proposed 

by Townend et al. (2017) of enhanced fracture-controlled permeability (10-16-10-13  m2) into the Alpine 

Fault’s hanging-wall (Cox et al., 2015; Sutherland et al., 2017; Townend et al., 2017). Stress effects 

may enhance vertical permeability below the ridges, and lateral permeability below the valleys, near 

the Alpine Fault and other active faults of high topographic relief, though this hypothesis awaits 

confirmation from further high-resolution stress and fluid flow models. 

Conclusion 

The interpretation of BHTV logs acquired in the DFDP-2B borehole yields a detailed and continuous 

record of foliation and fractures in the hangingwall of the central Alpine Fault. The constant foliation 

dip of 60° towards 145° observed in the borehole is similar to that observed in outcrop in the nearby 

Tatare Valley, and suggests that the dextral-reverse Alpine Fault plane here dips ~60° SE. Outcrop 

observations support the interpretation that auxiliary FS2 (sub-vertical striking NW-SE, and mainly 

above ~500 m) and FS3 (gently dipping, and mainly below ~500 m) fracture sets represent 

exhumation joints and inherited hydrofractures, respectively. The orientation of these joints is 

consistent with inferred paleo-stress orientations, and magnitudes σ2≈σ3. The presence of three 

ultrasonic image facies over a 50 m-long interval highlights local variability in lithology and/or 

alteration, which is also consistent with nearby outcrop observations and likely affect mechanical rock 

properties and the fracture system architecture. Together with a series of brecciated altered 

subsidiary faults, we suggest that foliation-parallel fractures (especially those features visible on the 

travel-time image) and the two auxiliary fracture sets define the fracture network controlling fluid 

flow within the Alpine Fault's hangingwall in the Whataroa Valley. The resulting permeability tensor 

near the DFDP-2B borehole is thus likely anisotropic with fluid flow dominantly occurring along 

abundant foliation-parallel fractures, complemented by additional pathways that are sub-vertical 

above 500 m and gently dipping below. The two auxiliary fracture sets are well-oriented for 

reactivation under strike-slip and reverse faulting regimes, caused by the combination of tectonic, 

topographic and late-exhumation-related stresses. The strong variations of relief along-strike of the 

Alpine Fault enhances vertical flow under the ridges, and lateral flow under the valleys. Thus, the high 

fracture density, variable fracture orientations observed in the BHTV logs, together with a stress 

tensor perturbed by topographic relief, support a model of an outer damage zone of enhanced 

permeability along critically-stressed fractures.  
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Appendix 1: BHTV Log Acquisition and Processing 

Two ultrasonic imaging (BHTV) tools developed by Advanced Logic Technology were used to 

accommodate the high temperatures encountered in DFDP-2B (Sutherland and al., 2015): the ABI40® 

in the 260-545.86 m interval and the ABI43® in the 545.86-888 m interval, able to operate at a 

temperature up to 70°C and 125°C, respectively (Table A.1). Both tools emit pulses with a 1.2 MHz 

frequency. Logs recorded 288 data points per revolution with 2 mm depth increments, at logging 

speeds of 0.5 to 1.2 m/min. The resulting image pixel size is ~4×2 mm in the sections drilled with a 

241.3 mm (9.5 in) and 215.9 mm (8.5 in) diameter drill bits (264-274.9 and 274.9-893 m intervals, 

respectively). The ultrasonic wave travel-time and amplitude are converted into images oriented with 

respect to magnetic north and vertical using an in-built three-components accelerometer and 

magnetometer. These sensors also allow to monitor borehole deviation and azimuth. The dataset is 

corrected for both the 23.15°E magnetic declination and the borehole deviation. 

[insert Table A.1 here] 

BHTV logs acquired with the ABI40 tool were depth-matched with other wireline logs using the 

gamma-ray sensors included as part of each logging tool suites (Sutherland and al., 2015). The ABI43 

tool was not stackable with the available gamma-ray tool, and hence the deepest logs acquired with 

this tool were adjusted by matching successive overlapping sections. 

The raw BHTV logs and associated acquisition curves were exported from WellCADTM and processed 

in RecallTM 5.4. Two classic types of image normalizations were used to enhance the image (Rider, 

1996): (1) static, which normalizes travel-time and amplitude values over the entire log and highlights 

large-scale variations (>1 m), and (2) dynamic, which normalizes the images over a moving window of 

given width (0.5 m depth in our case) and highlights local variations.  

Appendix 2: Calculations of Borehole Diameter (Caliper) 

The first step of the caliper calculation from the BHTV travel-time consists of evaluating the borehole's 

diameter in the time domain for each depth increment. For each depth increment, a circle was fitted 

to BHTV travel-time logs acquired with the ABI40 tool. Logs acquired with the ABI43 (546-888 m) had 

less signal returned, so the circle was fitted on travel-time dataset of five successive scans (i.e. every 

centimeter) to increase signal:noise ratio, based on the assumption that the caliper is unlikely to vary 

significantly over 1 cm (Figure A.1). To ensure the circle fitted the formation signal and not the internal 

tool reflections, we imposed minimum and maximum diameters corresponding to the limits of the 

window time. A fit was deemed good when at least 75% of the points satisfied this limit. This method 

limits false detection of tool noise rather than echoes back from the borehole wall. The main limitation 

of this procedure, however, is its inability to capture diameters larger or smaller than the window 

time. 

[insert Figure A.1 here] 

The second step of the caliper calculation consists of converting the diameter from time into distance. 

The speed of sound in the mud was evaluated using thermodynamic equations (Wagner and 

Kretzschmar, 2007) taking into account temperatures and pressures recorded at each logging depth, 

and time spent within the tool itself. As there were no temperature sensors on the ABI tools, 
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temperature logs acquired just prior to each BHTV logging run were used as proxies. Additionally, a  

coefficient related to the mud density measured at the outflow from the borehole was made to take  

into account changes in mud properties. The resulting caliper measurements were validated in the  

steel casing of known diameter, in sections of the borehole with high signal to noise return, and with  

a three-arm mechanical caliper log acquired in the upper part of the hole (264-395 m; Figure 3).  

Unfortunately, the mechanical caliper tool was not reliable in deeper sections of the borehole  

(Sutherland and al., 2015).   

The quality of the caliper log calculated from the BHTV travel-time relates directly to the BHTV quality:  

moderate between 260-476 m, very good between 476-545.86 m, variable between 545.86-558 m,  

bad between 558-598 m and variable between 598-888 m. A bad caliper quality indicates that the  

caliper may not represent the actual borehole shape. In intervals of bad caliper quality, the caliper log  

is ~10 mm bigger than the drill bit size due to the upper limit allowed on the borehole diameter. While  

this estimation likely underestimates borehole enlargements where return signal is poor, it remains a  

better proxy for borehole diameter than a constant bit size that would lead to an overestimation of  

structural dips in enlarged intervals.  

  

  

Supplementary Information  

Details on the impact of drilling and logging on BHTV log quality are detailed in Supplementary  

information. Dataset 01 contains the list of features identified in the BHTV log, with descriptive  

parameters.   
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Table 1: Appearance of the planar features.  

Type Amplitude contrast Amplitude value seen on travel-time image 

A-LT High Low Yes 

A-L High Low No 

A-H High High No 

B Moderate* Low No 

C Low* Low No 
*: Part of a series of sub-parallel, closely spaced (1-3 cm) sub-planar features.  

  

Table 2: Morphology of the planar features.  

Continuity Definition 

Continuous (C) Full sinusoid observed >270° around the borehole 

Discontinuous (D) Sinusoid observed in parts >270° cumulated around the borehole 

Partial (P) Partial sinusoid (i.e. observed 90-270° around the borehole) with at least one 
end observed 

Truncated (T) Partial sinusoid which stops on another feature 

Obscured (O) Partial sinusoid with both ends masked by bad image quality 
  

Table 3: Number and orientation (dip magnitude/dip direction) of planar features for each feature set  

(FS), characterized by their appearance (Table 1), morphology (Table 2) and planarity (npl.: near- 

planar; pl.: planar).  

FS 
Orien-
tation 

Appearance Morphology Planarity Total 

  A-LT A-L A-H B C C D P T I npl. pl.  

FS1 60/145 972 151 3 98 294 932 185 15 16 370 5 1513 1518 

FS2 89/047 259 35 0 2 2 97 38 75 36 52 9 289 298 

FS3 15/037 332 83 0 7 4 273 91 11 15 36 5 421 426 

Total 1563 269 3 107 300 1302 314 101 67 458 19 2223 2242 
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Table A.1: List of BHTV logs used in this study with related depth shift during depth matching (positive  

values indicate a downwards depth shift), depth intervals after depth matching, mean borehole  

azimuth and deviation, and overall BHTV log quality. The log names refer to Sutherland et al. (2015),  

depth intervals are measured along the borehole after depth matching, azimuth is relative to  

geographic north and deviation to vertical.  

Tool Log Shift (m) 
Top 

depth (m) 
Bottom 

depth (m) 
Hole 

azimuth (°) 
Hole 

deviation (°) 
BHTV quality 

ABI40 

R02P4 0.3953 260 275.15 217.06 2.8 good 

R11P3 0.2503 275.15 316.33 300.29 2.2 good 

R26P6 -0.1547 316.33 341.35 334.76 3.9 poor-good 

R26P7 -0.1547 341.35 383.73 343.37 7.7 poor-good 

R28P6 0.0953 383.73 457.3 345.25 13.5 poor-good 

R28P5 0.0953 457.3 465.6 345.17 16.1 good 

R28P4 0.0953 465.6 476.6 345.85 16.4 good 

R37P2 -0.0047 476.6 523.7 347.42 18.7 
good (locally 

bad) 

R39P1 -0.0453 523.7 545.86 344.52 22.3 good 

ABI43 

R47P9 0.3953 545.86 797.85 343.18 34.8 bad-good 

R51P13 1.0453 797.85 818.15 340.08 42.3 bad-good 

R51P11 1.0453 818.15 884.75 340.67 43.5 bad-good 

R51P09 1.0453 884.75 888 340.61 44.9 bad-good 
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Figure 1: Regional settings and summary of foliation orientations in nearby areas. A) Shaded digital  

elevation model with DFDP-2 and DFDP-1 boreholes, Alpine Fault and nearby townships locations..The  

inset shows the map location in New Zealand, and plate boundaries as red lines. B)  Geological map  

and mean foliation orientations in and near the Whataroa Valley (after Gillam et al., 2013; Little et al.,  

2002; Toy et al., 2017; Williams et al., accepted; and T.A. Little, unpublished data).  A-A': cross-section  

shown in Figure 2.  

Figure 2: Schematic cross-section along the Whataroa Valley (line A-A' in Figure 1) of foliation  

orientations measured in outcrop and interpreted in DFDP-2B; and summary lower hemisphere  

stereogram of the three main feature sets (density contours of poles to planar structures and great  

circles of mean orientations). The possible locations of the Alpine Fault are shaded in grey, assuming  

a 50-70° dip; the location at surface, near-surface geometry and location at depth of the Alpine Fault  

and limits between mylonite, protomylonite and Alpine schist are not well constrained.  

Figure 3: Composite of BHTV log interpretation and other wireline logs used in this study. From left to  

right: a) lithology, b) dual laterolog (shallow resistivity RLLS, deep resistivity RLLD), c) natural gamma- 

ray, d) caliper: mechanical, computed from BHTV travel-time (Appendix 2), and drill-bit-size, e)  

Statically normalized BHTV amplitude image, f) BHTV log quality, g) occurrence of low ultrasonic  

amplitude zones; h-j) planar features density with a 10 m window moving average: for all features and  

FS1 features (h), FS2 (i) and FS3 (j). Note the different scale between h) and i-j). The 480-540 m  

transition zone between FS2 and FS3 predominance is highlighted by an orange shaded rectangle.  

Grey zones in g-i are of bad BHTV log quality.  

Figure 4: Feature morphology and descriptors. A-LT, A-L, A-H, B and C refer to the appearance of  

features; Co, D, P and T refer to morphological descriptors (see Tables 1 and 2 for more details).  

Images are displayed unwrapped clockwise and oriented to geographic north. H indicates the high side  

of the borehole.  

Figure 5: Lower-hemisphere, equal-area stereographic representations of features identified in the  

BHTV logs in DFDP-1B and DFDP-2B boreholes. a) DFDP-2B, 264-540 m interval (number, n=1060). b)  

DFDP-2B, 540-888 m interval (n=1182). c) DFDP-2B: Fisher contours and mean orientation of poles to  

the three interpreted feature sets after being separated (n=2242); mean foliation orientation in the  

Whataroa Valley; and regional strike of the Alpine Fault. d) Feature orientation in the DFDP-1B  

borehole (after Townend et al., 2013) with the approximate Alpine Fault plane orientation at Gaunt  

Creek as a dashed great circle, white circle representing its pole.  

In Figures 5a-5b-5d, gray symbols are poles to features. Grey lines show Fisher contour intervals at 1%  

(Figures 5a-5b-5d) and 2.5% (Figure 5c) intervals. Large black circles mark the positions of the modal  

orientations, and solid great circles show the corresponding planes. Yellow dashed great circles on  

Figures 5a-5b represent the poles planes of undersampled features parallel to the borehole at 400 and  

714 m, respectively. The orientation of this great circle for each depth is the borehole trajectory  

(represented as yellow solid line).  

Figure 6: Appearance of ultrasonic image facies (UAF) and low amplitude zones (LAZ). a) 490-510 m.  

b) 537-546 m. (i) depth; (ii) drilling rate of penetration; (iii) natural gamma-ray (GR); (iv) Laterolog  

(shallow (RLLS) and deep (RLLD) resistivity); (v) caliper calculated from travel-time, and drill-bit-size;  

(vi) static travel-time BHTV image; (vii) static amplitude BHTV image; (viii) features orientation  

(tadpole tail indicates the dip direction; see Table 1 for acronyms); (ix) dynamic amplitude BHTV image  

showing enlargements of LAZ. Note the brecciated texture with angular-shaped centimetric patches  

of high ultrasonic amplitude in the low amplitude zones. c) Summary log of the distribution of the  
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three UAF in the 490-545 m interval. “SA”: artefact caused by a drill string stabiliser (Supplementary 

Information). 

Figure 7: Photographs of foliated Alpine Schists, with fractures and veins interpreted to be similar to 

those in the BHTV log. a) Foliation planes (green shaded plane “F” and other parallel planes), and 

steeply-dipping foliation-orthogonal joints (arrows) in non-mylonitic Alpine Schist exposed in the 

Whanganui River quarry, 20 km north of Whataroa. Such exhumation-related brittle structures are 

common in outcrops of Alpine Fault hangingwall. b) Open, sub-horizontal extension fracture (white 

arrow) cutting steeply dipping garnet zone schists at Franz Josef Glacier. c) Gently dipping gash vein 

from the upper Franz Josef Glacier Valley in biotite zone Alpine schists. This open-cavity vein is infilled 

by quartz+calcite+chlorite+adularia. 

Figure 8: BHTV log of the 710-750 m interval surrounding a major static temperature gradient change 

and mud loss while drilling, showing numerous thin intervals of bad and poor image quality within 

intervals of good image quality which may indicate intensely fractured zones. From left to right: depth, 

static temperature gradient from distributed temperature sensing (DTS) cable, resistivity, static travel-

time image, static amplitude image, tadpoles of interpreted features, BHTV log quality, dynamic 

amplitude image enlargement of the 725-735 m interval surrounding the sharp decrease in 

temperature gradient and mud loss zone. 

Figure 9: Mohr circles of all features identified in DFDP-2B and the Alpine Fault assuming a critically-

stressed regime with Φ=0.15, and principal stress directions compatible with those obtained in Upton 

et al. (2017). Stresses estimated at 1 km depth with σ1 horizontal and oriented 115°. a) Elevation 

profile across the Whataroa Valley with diagrams of the two simplified numerically modelled stress 

regimes. b) Strike-slip regime, under the ridges. c) Reverse regime, under the valleys. DFDP-2B is 

located on the side a the Whataroa Valley near a steep ridge. 

Figure 10: Examples of permeable fractures of each orientation set, and at the intersection between 

a truncated (T) FS3 and a continuous FS1 fracture, identified by temperature changes (shaded areas) 

and consistent with resistivity and in cases caliper log variations. FS1, FS2 and FS3 features are 

represented as red, green and blue tadpoles, respectively. From left to right: natural gamma ray, 

caliper (DBS: drill bit size; M: 1-arm caliper; BHTV: calculated from BHTV log), resistivity (S: shallow; D: 

deep) temperature run 7 hours after end of mud circulation (R04_P1; Sutherland et al., 2015), tadpoles 

of features colored by their orientation, dynamic amplitude, travel-time, interpreted sinusoids. 

Figure A.1: Example of caliper calculation from BHTV log, with the fitted circle, travel-time 

measurements around the borehole, and upper and lower bounds of the window time (136 and 157 μs 

in this case). Points within the inner green circle or outside the outer green circle were arbitrarily 

assigned to the window time bounds during logging and not used for fitting the circle. Circle fitting is 

made on the raw measurement in micro-seconds (radial coordinates), the circular orientation 

reference is arbitrary. The fitted circle center (red cross) indicates here a slight decentralization.   
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