1,936 research outputs found

    Optimum reentry trajectories of a lifting vehicle

    Get PDF
    Research results are presented of an investigation of the optimum maneuvers of advanced shuttle type spacecraft during reentry. The equations are formulated by means of modified Chapman variables resulting in a general set of equations for flight analysis which are exact for reentry and for flight in a vacuum. Four planar flight typical optimum manuevers are investigated. For three-dimensional flight the optimum trajectory for maximum cross range is discussed in detail. Techniques for calculating reentry footprints are presented

    Optimal Online Selection of a Monotone Subsequence: a Central Limit Theorem

    Get PDF
    Consider a sequence of nn independent random variables with a common continuous distribution FF, and consider the task of choosing an increasing subsequence where the observations are revealed sequentially and where an observation must be accepted or rejected when it is first revealed. There is a unique selection policy πn∗\pi_n^* that is optimal in the sense that it maximizes the expected value of Ln(πn∗)L_n(\pi_n^*), the number of selected observations. We investigate the distribution of Ln(πn∗)L_n(\pi_n^*); in particular, we obtain a central limit theorem for Ln(πn∗)L_n(\pi_n^*) and a detailed understanding of its mean and variance for large nn. Our results and methods are complementary to the work of Bruss and Delbaen (2004) where an analogous central limit theorem is found for monotone increasing selections from a finite sequence with cardinality NN where NN is a Poisson random variable that is independent of the sequence.Comment: 26 page

    Amiodarone-Induced Pulmonary Toxicity - A Frequently Missed Complication.

    Get PDF
    IntroductionAmiodarone is often used in the suppression of tachyarrhythmias. One of the more serious adverse effects includes amiodarone pulmonary toxicity (APT). Several pulmonary diseases can manifest including interstitial pneumonitis, organizing pneumonia, acute respiratory distress syndrome, diffuse alveolar hemorrhage, pulmonary nodules or masses, and pleural effusion. Incidence of APT varies from 5-15% and is correlated to dosage, age of the patient, and preexisting lung disease.DescriptionA 56-year-old male with a past medical history of coronary artery disease and chronic obstructive pulmonary disease was admitted for a coronary artery bypass graft. Post-operatively, the patient was admitted to the ICU for ventilator management and continued to receive his home dose of amiodarone 400 mg orally twice daily, which he had been taking for the past 3 months. The patient was found to be hypoxemic with a PaO2 52 mmHg and bilateral infiltrates on chest x-ray. Patient also complained of new onset dyspnea. Physical exam found bilateral rhonchi with bibasilar crackles and subcutaneous emphysema along the left anterior chest wall. Daily chest x-rays showed worsening of bilateral interstitial infiltrates and pleural effusions. A chest high-resolution computed tomography on post-operative day 3 showed extensive and severe bilateral ground glass opacities. APT was suspected and amiodarone was discontinued. A course of oral prednisone without antibiotics was initiated, and after one week of treatment the chest film cleared, the PaO2 value normalized and dyspnea resolved.DiscussionAPT occurs via cytotoxic T cells and indirectly by immunological reaction. Typically the lungs manifest a diffuse interstitial pneumonitis with varying degrees of fibrosis. Infiltrates with a 'ground-glass' appearance appreciated on HRCT are more definitive than chest x-ray. Pulmonary nodules can be seen, frequently in the upper lobes. These are postulated to be accumulations of amiodarone in areas of previous inflammation. Those undergoing major cardiothoracic surgery are known to be predisposed to APT. Some elements require consideration: a baseline pulmonary function test (PFT) did not exist prior. APT would manifest a restrictive pattern of PFTs. In APT diffusing capacity (DLCO) is generally >20 percent from baseline. A DLCO was not done in this patient. Therefore, not every type of interstitial lung disease could be ruled out. Key features support a clinical diagnosis: (1) new dyspnea, (2) exclusion of lung infection, (3) exclusion of heart failure, (4) new radiographic features, (5) improvement with withdrawal of amiodarone. Our case illustrates consideration of APT in patients who have extensive use of amiodarone and new onset dyspnea

    Analytic theory of orbit contraction

    Get PDF
    The motion of a satellite in orbit, subject to atmospheric force and the motion of a reentry vehicle are governed by gravitational and aerodynamic forces. This suggests the derivation of a uniform set of equations applicable to both cases. For the case of satellite motion, by a proper transformation and by the method of averaging, a technique appropriate for long duration flight, the classical nonlinear differential equation describing the contraction of the major axis is derived. A rigorous analytic solution is used to integrate this equation with a high degree of accuracy, using Poincare's method of small parameters and Lagrange's expansion to explicitly express the major axis as a function of the eccentricity. The solution is uniformly valid for moderate and small eccentricities. For highly eccentric orbits, the asymptotic equation is derived directly from the general equation. Numerical solutions were generated to display the accuracy of the analytic theory

    More oxygen during development enhanced flight performance but not thermal tolerance of Drosophila melanogaster

    Get PDF
    High temperatures can stress animals by raising the oxygen demand above the oxygen supply. Consequently, animals under hypoxia could be more sensitive to heating than those exposed to normoxia. Although support for this model has been limited to aquatic animals, oxygen supply might limit the heat tolerance of terrestrial animals during energetically demanding activities. We evaluated this model by studying the flight performance and heat tolerance of flies (Drosophila melanogaster) acclimated and tested at different concentrations of oxygen (12%, 21%, and 31%). We expected that flies raised at hypoxia would develop into adults that were more likely to fly under hypoxia than would flies raised at normoxia or hyperoxia. We also expected flies to benefit from greater oxygen supply during testing. These effects should have been most pronounced at high temperatures, which impair locomotor performance. Contrary to our expectations, we found little evidence that flies raised at hypoxia flew better when tested at hypoxia or tolerated extreme heat better than did flies raised at normoxia or hyperoxia. Instead, flies raised at higher oxygen levels performed better at all body temperatures and oxygen concentrations. Moreover, oxygen supply during testing had the greatest effect on flight performance at low temperature, rather than high temperature. Our results poorly support the hypothesis that oxygen supply limits performance at high temperatures, but do support the idea that hyperoxia during development improves performance of flies later in life

    Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    Get PDF
    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code

    Strained and Relaxed Semiconducting Silicide Layers Heteroepitaxially Grown on Silicon

    Get PDF
    The semiconducting silicide ß-FeSi2, which can be grown epitaxially on silicon, is potentially an interesting material for integrated optoelectronic devices. Its semiconducting state stabilised by a solid state Jahn Teller effect is very unusual. Indeed the epitaxial growth of FeSi2 on silicon (111) in a Molecular Beam Epitaxy (MBE) chamber has revealed the existence of a metallic strained FeSi2 phase which is the result of a simultaneous electronic and structural transition. The stability and the relaxation of this strained phase which is specifically due to the epitaxy of FeSi2 on the silicon (111) face will be detailed in this paper. Furthermore, depending on the kinetics of the growth, we shall show that it is possible to epitaxially grow, on silicon, any silicide existing at low temperature (bcc Fe, FeSi, ß-FeSi2) and to observe dynamical transitions from the strained FeSi2 phase toward epitaxial ß-FeSi2 and FeSi

    Particle-particle random phase approximation applied to Beryllium isotopes

    Full text link
    This work is dedicated to the study of even-even 8-14 Be isotopes using the particle-particle Random Phase Approximation that accounts for two-body correlations in the core nucleus. A better description of energies and two-particle amplitudes is obtained in comparison with models assuming a neutron closed-shell (or subshell) core. A Wood-Saxon potential corrected by a phenomenological particle-vibration coupling term has been used for the neutron-core interaction and the D1S Gogny force for the neutron-neutron interaction. Calculated ground state properties as well as excited state ones are discussed and compared to experimental data. In particular, results suggest the same 2s_1/2-1p_1/2 shell inversion in 13Be as in 11Be.Comment: to appear in Phys. Rev.
    • …
    corecore