This work is dedicated to the study of even-even 8-14 Be isotopes using the
particle-particle Random Phase Approximation that accounts for two-body
correlations in the core nucleus. A better description of energies and
two-particle amplitudes is obtained in comparison with models assuming a
neutron closed-shell (or subshell) core. A Wood-Saxon potential corrected by a
phenomenological particle-vibration coupling term has been used for the
neutron-core interaction and the D1S Gogny force for the neutron-neutron
interaction. Calculated ground state properties as well as excited state ones
are discussed and compared to experimental data. In particular, results suggest
the same 2s_1/2-1p_1/2 shell inversion in 13Be as in 11Be.Comment: to appear in Phys. Rev.