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Optimal Online Selection of a Monotone Subsequence: A Central Limit
Theorem

Abstract
Consider a sequence of n independent random variables with a common continuous distribution F, and
consider the task of choosing an increasing subsequence where the observations are revealed sequentially and
where an observation must be accepted or rejected when it is first revealed. There is a unique selection policy
πn* that is optimal in the sense that it maximizes the expected value of Ln(πn*), the number of selected
observations. We investigate the distribution of Ln(πn*); in particular, we obtain a central limit theorem for
Ln(πn*) and a detailed understanding of its mean and variance for large n. Our results and methods are
complementary to the work of Bruss and Delbaen (2004) where an analogous central limit theorem is found
for monotone increasing selections from a finite sequence with cardinality N where N is a Poisson random
variable that is independent of the sequence.
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OPTIMAL ONLINE SELECTION OF A MONOTONE

SUBSEQUENCE: A CENTRAL LIMIT THEOREM

ALESSANDRO ARLOTTO, VINH V. NGUYEN,
AND J. MICHAEL STEELE

Abstract. Consider a sequence of n independent random variables with a
common continuous distribution F , and consider the task of choosing an in-
creasing subsequence where the observations are revealed sequentially and
where an observation must be accepted or rejected when it is first revealed.
There is a unique selection policy π

∗

n
that is optimal in the sense that it max-

imizes the expected value of Ln(π∗

n
), the number of selected observations. We

investigate the distribution of Ln(π∗

n
); in particular, we obtain a central limit

theorem for Ln(π∗

n
) and a detailed understanding of its mean and variance for

large n. Our results and methods are complementary to the work of Bruss and
Delbaen (2004) where an analogous central limit theorem is found for mono-
tone increasing selections from a finite sequence with cardinality N where N

is a Poisson random variable that is independent of the sequence.

Key Words. Bellman equation, online selection, Markov decision problem,
dynamic programming, monotone subsequence, de-Poissonization, martingale
central limit theorem, non-homogeneous Markov chain.

Mathematics Subject Classification (2010). Primary: 60C05, 60G40,
90C40; Secondary: 60F05, 60G42, 90C27, 90C39

1. Introduction

In the problem of online selection of a monotone increasing subsequence, a
decision maker observes a sequence of independent non-negative random variables
{X1, X2, . . . , Xn} with common continuous distribution F , and the task is to select
a subsequence {Xτ1, Xτ2 , . . . , Xτj} such that

Xτ1 ≤ Xτ2 ≤ · · · ≤ Xτj

where the indices 1 ≤ τ1 < τ2 < · · · < τj ≤ n are stopping times with respect to
the σ-fields Fi = σ{X1, X2, . . . , Xi}, 1 ≤ i ≤ n. In other words, at time i when the
random variable Xi is first observed, the decision maker has to choose to accept Xi

as a member of the monotone increasing sequence that is under construction, or to
reject Xi from any further consideration.

We call such a sequence of stopping times a feasible policy, and we denote the set
of all such policies by Π(n). For any π ∈ Π(n), we then let Ln(π) be the random
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variable that counts the number of selections made by policy π for the realization
{X1, X2, . . . , Xn}; that is,

Ln(π) = max{j : Xτ1 ≤ Xτ2 ≤ · · · ≤ Xτj where 1 ≤ τ1 < τ2 < · · · < τj ≤ n}.

Samuels and Steele (1981) found that for each n ≥ 1 there is a unique policy
π∗
n ∈ Π(n) such that

(1) E[Ln(π
∗
n)] = sup

π∈Π(n)

E[Ln(π)],

and for such optimal policies one has

(2) E[Ln(π
∗
n)] ∼ (2n)1/2 as n → ∞.

Bruss and Robertson (1991) and Gnedin (1999) showed that one actually has the
crisp upper bound

(3) E[Ln(π
∗
n)] ≤ (2n)1/2 for all n ≥ 1,

and, as corollaries of related work, Rhee and Talagrand (1991), Gnedin (1999) and
Arlotto and Steele (2011) all found that there is an asymptotic error rate for the
lower bound

(4) (2n)1/2 −O(n1/4) ≤ E[Ln(π
∗
n)] as n → ∞.

Here, our main goal is to show that Ln(π
∗
n) satisfies a central limit theorem.

Theorem 1 (Central Limit Theorem for Optimal Online Monotone Selections).
For any continuous distribution F one has for n → ∞ that

(5) (2n)1/2 −O(log n) ≤ E[Ln(π
∗
n)] ≤ (2n)1/2,

(6)
1

3
E[Ln(π

∗
n)]−O(1) ≤ Var[Ln(π

∗
n)] ≤

1

3
E[Ln(π

∗
n)] +O(log n),

and one has the convergence in distribution

(7)
31/2{Ln(π

∗
n)− (2n)1/2}

(2n)1/4
=⇒ N(0, 1).

Two connections help to put this result in context. First, it is useful to recall
the analogous problem of offline (or full information) subsequence selection, for
which there is a remarkably rich literature. Second, there are closely related results
of Bruss and Delbaen (2001, 2004) that deal with sequential selection where the
number of values to be seen is random with a Poisson distribution.

First Connection: The Tracy-Widom Law.

If one knows all of the values {X1, X2, . . . , Xn} at the time the selections begin,
then decision maker can select a maximal increasing subsequence with length

(8) Ln = max{j : Xi1 ≤ Xi2 ≤ · · · ≤ Xij where 1 ≤ i1 < i2 < · · · < ij ≤ n}.

This full information or offline length Ln has been studied extensively.
The question of determining the distribution of Ln was first raised by Ulam

(1961), but the analysis of Ln was taken up in earnest by Hammersley (1972),
Kingman (1973), Logan and Shepp (1977), and Veršik and Kerov (1977) who es-
tablished in steps that

E[Ln] ∼ 2n1/2 as n → ∞.
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Much later H. Kesten conjectured (cf. Aldous and Diaconis, 1999, p. 416) that there
should be positive constants α and β such that

(9) E[Ln] = 2n1/2 − αn1/6 + o(n1/6) and {Var[Ln]}
1/2

= βn1/6 + o(n1/6).

After subtle progress by Pilpel (1990), Bollobás and Brightwell (1992), Kim (1996),
Bollobás and Janson (1997), and Odlyzko and Rains (2000) this conjecture was
settled affirmatively by Baik, Deift and Johansson (1999) who proved moreover
that n−1/6(Ln − 2n1/2) converges in distribution to the famous Tracy-Widom law
which had emerged just a bit earlier from the theory of randommatrices. The recent
monograph of Romik (2015) gives a highly readable account of this development.

One distinction between the online and the offline problems is that, while the
means are of the same order in each case, the variances are not of the same order.
The standard deviation for offline selection is of order n1/6, but by (6) the standard
deviation for the online selection is of order n1/4. Intuitively this difference reflects
greater uncertainty in the online selection problem than in the offline problem, but
it is harder to imagine why moving to the online formulation would drive one all of
the way from the Tracy-Widom law to the Gaussian law.

Second Connection: The Bruss-Delbaen Central Limit Theorem.

Consider the problem of sequential selection of a monotone increasing subse-
quence from {X1, X2, . . . , XNν

} where Nν is a Poisson random variable with mean
ν that is independent of the sequence {X1, X2, . . .}. Just as in (1) there is a unique
sequential policy that maximizes the expected number of selections that are made.
If we denote this optimal policy by π∗

Nν
then as before LNν

(π∗
Nν

) is the number of
selections from {X1, X2, . . . , XNν

} that are made by the policy π∗
Nν

.
Bruss and Delbaen (2001) proved that, as ν → ∞, one has the mean estimate

(10) E[LNν
(π∗

Nν
)] = (2ν)1/2 +O(log ν),

and the variance estimate

Var[LNν
(π∗

Nν
)] =

1

3
(2ν)1/2 +O(log ν).

Moreover, Bruss and Delbaen (2004) proved that, as ν → ∞, one has the conver-
gence in distribution

31/2{LNν
(π∗

Nν
)− (2ν)1/2}

(2ν)1/4
=⇒ N(0, 1).

One needs to ask if it is possible to “de-Poissonize” these results to get Theorem
1, either in whole or in part. We show in Section 3 that the lower half of (5) can be
obtained from (10) by an easy de-Poissonization argument; in fact, this is the only
proof we know of this bound. In Section 3 we also explain as best we can, why no
further parts of Theorem 1 can be obtained by de-Poissonization.

One can further ask if it might be possible to adapt the methods of Bruss and
Delbaen (2001, 2004) to prove Theorem 1. The major benefit of a Poisson horizon
is that it gives access to the tools of continuous time Markov processes such as the
infinitesimal generator and Dynkin’s martingales. Moreover, in this instance the
associated value function V (t, x) can be written as a function of one variable by
the space-time transformation V (t, x) = V̄ (t(1− x)).

Here we lack these benefits. We work in discrete time with a known finite horizon,
and our value function vk(s) permanently depends on the state s and the time to
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the horizon k. This puts one a long way from the world of Bruss and Delbaen (2001,
2004). Still, in Section 7 we give a brief proof of the well-known upper bound (3)
that echoes an argument of Bruss and Delbaen (2004, pp. 291–292). This seems to
be the only instance of an overlap of technique.

Organization of the Analysis.

The proof of our central limit theorem has two phases. In the first phase, we
investigate the analytic properties of the value functions given by framing the se-
lection problem as a Markov decision problem. Section 2 addresses the monotonic-
ity and the submodularity of the value functions. We also obtain that the map
n 7→ E[Ln(π

∗
n)] is concave, and this is used in Section 3 to prove the lower half of

(5); this is our only de-Poissonization argument.
Sections 4 and 5 develop smoothness and curvature properties of the value func-

tions. In particular, we find that in the uniform model the value functions are
concave as a function of the state variable, but, for the exponential model, they are
convex. This broken symmetry is surprisingly useful even though the distribution
of Ln(π

∗
n) does not depend on the model distribution F .

The second phase of the proof deals with a natural martingale that one obtains
from the value functions. This martingale is defined in Section 6, and it is used
in Sections 7, 8 and 9 to estimate the conditional variances of Ln(π

∗
n). These

estimates and a martingale central limit theorem are then used in Section 10 to
complete the proof of Theorem 1. Finally, in Section 11 we comment briefly on two
open problems and the general nature of the methods developed here.

2. Structure of the Value Functions

We now let vk(s) denote the expected value of the number of monotone increasing
selections under the optimal policy when (i) there are k observations that remain
to be seen and (ii) the value of the most recently selected observation is equal to
s. The functions {vk : 1 ≤ k < ∞} are called the value functions, and they can be
determined recursively. Specifically, we have the terminal condition

v0(s) = 0 for all s ≥ 0,

and if we set F (s) = P (Xi ≤ s) then for all k ≥ 1 and s ≥ 0 we have the recursion

(11) vk(s) = F (s)vk−1(s) +

∫ ∞

s

max{vk−1(s), 1 + vk−1(x)} dF (x).

To see why this equation holds, note that with probability F (s) one is presented at
time i = n− k+1 with a value Xi that is less than the previously selected value s.
In this situation, we do not have the opportunity to select Xi. This leaves us with
k− 1 observations to be seen and with the value of the last selected observation, s,
unchanged. This possibility contributes the term F (s)vk−1(s) to our equation.

Now, if the newly presented value satisfies s ≤ Xi then we have the option to
select or reject Xi = x. If we select Xi = x, then the sum of our present reward
and expected future reward is 1 + vk−1(x). On the other hand, if we choose not
to select Xi = x, then we have no present reward and the expected future reward
is vk−1(s) since the value of the running maximum is not changed. Since Xi has
distribution F , the expected optimal contribution is given by the second term of
equation (11).
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The identity (11) is called the Bellman recursion for the sequential selection
problem. In principle, it tells us everything there is to know about the value
functions; in particular, it determines

E[Ln(π
∗
n)] = vn(0) for all n ≥ 1.

Qualitative information can also be extracted from the recursion (11). For example,
it is immediate from (11) that the value functions are always continuous. More
refined properties of the value functions may depend on F , and here it is often
useful to consider a special subclass of distributions.

Definition 2 (Admissible Distribution). A distribution F is said to be admissible

if there is an open interval I ⊆ [0,∞) such that

(i) F is differentiable on I,
(ii) F ′(x) = f(x) > 0 for all x ∈ I, and
(iii)

∫

I
f(x) dx = 1.

The next lemma illustrates how admissibility can be used. The result is largely
intuitive, but the formal proof via (11) suggests that some care is needed.

Lemma 3 (Monotonicity of Value Functions). For any distribution F the value

functions are non-increasing. Moreover, if F is admissible, then the value functions

are strictly decreasing on I.

Proof. The first assertion is trivial, so we focus on the second. To organize our
induction we denote by Hk the assertion

vk(s+ ǫ) < vk(s) for all s ∈ I and all ǫ > 0.

When k = 1, we have v1(s) = 1−F (s), and admissibility of F implies v1 is strictly
decreasing on I. This establishes the base case H1.

For k > 1 we assume that Hk−1 holds, and we note by the Bellman recursion
(11) and the characterizing properties of admissible distributions that

vk(s+ ǫ)− vk(s) = F (s+ ǫ)vk−1(s+ ǫ) +

∫ ∞

s+ǫ

max{vk−1(s+ ǫ), 1 + vk−1(x)}f(x) dx

− F (s)vk−1(s)−

∫ ∞

s

max{vk−1(s), 1 + vk−1(x)}f(x) dx

≤ F (s+ ǫ)vk−1(s+ ǫ) +

∫ ∞

s+ǫ

max{vk−1(s), 1 + vk−1(x)}f(x) dx

− F (s+ ǫ)vk−1(s)−

∫ ∞

s+ǫ

max{vk−1(s), 1 + vk−1(x)}f(x) dx

= F (s+ ǫ) {vk−1(s+ ǫ)− vk−1(s)} ,

where we first used vk−1(s+ ǫ) < vk−1(s) and then used the trivial estimate

{F (s+ ǫ)− F (s)}vk−1(s) ≤

∫ s+ǫ

s

max{vk−1(s), 1 + vk−1(x)}f(x) dx.

For s ∈ I one has strict positivity of F (s+ ǫ), so by the induction hypothesis Hk−1

we have vk(s+ ǫ)− vk(s) ≤ F (s+ ǫ) {vk−1(s+ ǫ)− vk−1(s)} < 0. �
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Optimal Threshold Functions.

The monotonicity of vk−1 tells us that the integrand in (11) equals the right
maximand {1 + vk−1(x)} on a certain initial segment of [s,∞), and it equals the
left maximand vk−1(s) on the rest of the segment. This observation leads to a
useful reformulation of the Bellman recursion; specifically, if we set

(12) hk(s) = sup{x ∈ [s,∞) : F (x) < 1 and vk−1(s) ≤ 1 + vk−1(x)},

then the Bellman recursion (11) can be written as

(13) vk(s) = {1− F (hk(s)) + F (s)}vk−1(s) +

∫ hk(s)

s

{1 + vk−1(x)} dF (x).

The functions {hk : 1 ≤ k < ∞} defined by (12) are called the optimal threshold

functions.
If vk−1(s) ≤ 1, the characterization (12) has an informative policy interpretation.

Namely, if vk−1(s) ≤ 1, then the optimal strategy for the decision maker is the
greedy strategy where one accepts any arriving observation that is as large as s.
On the other hand, if vk−1(s) > 1, the optimal decision maker needs to act more
conservatively; when k observations remain to be seen, one only accepts the newly
arriving observation if it falls in the interval [s, hk(s)].

When F is admissible, we have the strict monotonicity of vk−1, and this allows
a second characterization of the threshold function:

(14) hk(s) uniquely satisfies vk−1(s) = 1 + vk−1(hk(s)) if vk−1(s) > 1.

The value hk(s) of the threshold function thus marks the point of indifference
between the optimal acceptance region and the optimal rejection region. The char-
acterization (14) also motivates a definition.

Definition 4 (Critical Value). If F is admissible, then the unique solution of the
equation vk(s) = 1 is called the critical value, and it is denoted by s∗k.

The analytical character of hk changes at s∗k, and one has to be attentive to the
differing behavior of hk above and below s∗k. We will not need this distinction until
Section 4, but it is critical there.

We complete this section by recording two simple (but useful) bounds on the
time-difference of the value function. These bounds follow from the characterization
(12) for the optimal threshold hk and the monotonicity of the value function vk−1.

Lemma 5. For s ≥ 0 and 1 ≤ k < ∞, we have the inequalities

(15) 0 ≤ vk(s)− vk−1(s) ≤ F (hk(s))− F (s) ≤ 1.

From a modeler’s perspective, this inequality is intuitive since F (hk(s)) − F (s)
can be interpreted as the probability that one selects the next observation when
k observations remain to be seen. A formal confirmation of (15) illustrates the
handiness of the second form (13) of the Bellman equation.

Proof of Lemma 5. First, note that after subtracting vk−1(s) from both sides of
equation (13), we have

vk(s)− vk−1(s) =

∫ hk(s)

s

{1 + vk−1(x) − vk−1(s)} dF (x).
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The map x 7→ vk−1(x) is monotone decreasing, so the factor {1+vk−1(x)−vk−1(s)}
is bounded above by one. This gives us our upper bound in (15). The representation
(12) for hk tells us the integrand is non-negative on [s, hk(s)], and this gives the
lower bound in (15). �

Value Function Submodularity.

If one increases the number k of observations yet to be seen, then the decision
maker faces a richer set of future possibilities. This in turn suggests that the
decision maker may want to act more conservatively, keeping more powder dry for
future action. Specifically, one might guess that hk+1(s) ≤ hk(s) for all s ∈ [0,∞)
and all 1 ≤ k < ∞. We confirm this guess as a corollary of the next proposition
which gives us a pivotally useful property of the value functions.

Proposition 6 (Submodularity of the Value Functions). The sequence of value

functions {vk : 1 ≤ k < ∞} determined by the Bellman recursion (11) is submod-
ular in the sense that for all 1 ≤ k < ∞ one has

(16) vk−1(s)− vk−1(t) ≤ vk(s)− vk(t) for all 0 ≤ s ≤ t < ∞.

Proof. We first derive a recursion for the difference vk(s)−vk(t). For 0 ≤ s ≤ t < ∞,
we have from (11) that

vk(s)−vk(t)=F (s){vk−1(s)−vk−1(t)}(17)

+

∫ t

s

max{vk−1(s)−vk−1(t), 1+vk−1(x)−vk−1(t)} dF (x)

+

∫ ∞

t

[max{vk−1(s), 1+vk−1(x)}−max{vk−1(t), 1+vk−1(x)}] dF (x).

Next, we let

ak−1(x)
def
= min{vk−1(s)− vk−1(t), vk−1(s)− vk−1(x)− 1},

bk−1(x)
def
= min{1 + vk−1(x)− vk−1(t), 0},

and we note that the difference

max{vk−1(s), 1 + vk−1(x)} −max{vk−1(t), 1 + vk−1(x)}

which appears in the last integrand of (17) can be written as

max{vk−1(s), 1 + vk−1(x)} −max{vk−1(t), 1 + vk−1(x)} = max{ak−1(x), bk−1(x)}.

Here s ≤ t, so when bk−1(x) < 0 the monotonicity of the value functions in Lemma
3 implies that 0 ≤ vk−1(s) − vk−1(x) − 1. It then follows that 0 ≤ ak−1(x) and
max{ak−1(x), bk−1(x)} = max{ak−1(x), 0}. In general, we then have the equiva-
lence

max{vk−1(s), 1 + vk−1(x)} −max{vk−1(t), 1 + vk−1(x)} = max{ak−1(x), 0},
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and we can substitute this representation and the explicit expression for ak−1(x)
in (17) to obtain the simplified difference recursion

vk(s)−vk(t) = F (s){vk−1(s)−vk−1(t)}(18)

+

∫ t

s

max{vk−1(s)−vk−1(t), 1+vk−1(x)−vk−1(t)} dF (x)

+

∫ ∞

t

max{min{vk−1(s)− vk−1(t), vk−1(s)− vk−1(x)− 1}, 0} dF (x).

We now let Hk be the assertion that

vk−1(s)− vk−1(t) ≤ vk(s)− vk(t) for all 0 ≤ s ≤ t < ∞,

and we prove by induction that Hk holds for all k ≥ 1. We first note that for k = 1
we have v0(s) = 0 for all s ∈ [0,∞). By the difference recursion (18) we obtain
v1(s)− v1(t) = F (t)− F (s) ≥ 0 = v0(s)− v0(t), so the base case H1 holds.

Next, we suppose that Hk−1 holds, and we apply Hk−1 to all of the terms on
the right-hand side of (18). We then obtain that

vk(s)−vk(t) ≤ F (s){vk(s)−vk(t)}

+

∫ t

s

max{vk(s)−vk(t), 1+vk(x)−vk(t)} dF (x)

+

∫ ∞

t

max{min{vk(s)− vk(t), vk(s)− vk(x)− 1}, 0} dF (x).

We can now apply the difference recursion (18) a second time after we replace
k by k + 1. This tells us that the right-hand side above is equal to the difference
vk+1(s)− vk+1(t), thus completing the proof of Hk and of the proposition. �

The submodularity guaranteed by Proposition 6 is more powerful than one might
expect. In particular, it delivers three basic corollaries.

Corollary 7 (Monotonicity of Optimal Thresholds). For the threshold functions

characterized by (12) we have

(19) hk+1(s) ≤ hk(s) for 0 ≤ s < ∞.

Proof. Here we only have to note that

hk+1(s) = sup{x ∈ [s,∞) : F (x) < 1 and vk(s)− vk(x) ≤ 1}

≤ sup{x ∈ [s,∞) : F (x) < 1 and vk−1(s)− vk−1(x) ≤ 1}

= hk(s),

where the one inequality comes directly from the submodularity (16) and the two
equalities come from (12). �

Corollary 8 (Concavity in k of the Value Functions.). The value functions are

concave as functions of k; that is, for each s ∈ [0,∞) and all k ≥ 1, one has

vk+1(s)− 2vk(s) + vk−1(s) ≤ 0.
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Proof. By the monotonicity (19) of the optimal threshold functions, the recursion
(13) gives us the difference identity

vk+1(s)− vk(s) = vk(s)− vk−1(s)

+

∫ hk+1(s)

s

{vk−1(s)− vk−1(x)− vk(s) + vk(x)} dF (x)

+

∫ hk(s)

hk+1(s)

{vk−1(s)− 1− vk−1(x)} dF (x),

and it suffices to check that the two integrands on the right-hand side are non-
positive. Non-positivity of the first integrand follows from the submodularity (16),
and non-positivity of the second integrand follows from the characterization of hk(s)
in (12). �

Corollary 9 (Concavity in n of the Expected Length). For any continuous F , the

map n 7→ E[Ln(π
∗
n)] is concave in n.

This is just a special case of Corollary 8 (where one just takes s = 0 and k = n),
but, as we will see in Section 3, this concavity carries noteworthy force.

Remark 10 (Further Context: an Offline Open Problem). It is not known if the
corresponding concavity holds for the offline monotone subsequence problem. That
is, we do not know if the map n 7→ E[Ln] is concave where Ln is defined by (8). In
this case we do know E[Ln] = 2n1/2 − αn1/6 + o(n1/6) so concavity does seem like
a highly plausible conjecture.

3. Intermezzo: Possibilities for De-Poissonization

If N is an integer valued random variable, then one can consider the problem of
sequential selection of a monotone increasing subsequence from the random length
sequence S = {X1, X2, . . . , XN}. Here, as usual, the elements of the sequence are
independent with a common continuous distribution F , and they are also indepen-
dent of N . We also assume that the decision maker knows F and the distribution
of N , but the decision maker does not know the value of N until the sequence S
has been exhausted. We let LN(π) denote the number of selections that are made
when one follows a policy π for sequential selection from S.

Proposition 11 (Information Lower Bound). If E[N ] = n for some n ∈ N, then

(20) E[LN (π)] ≤ E[Ln(π
∗
n)].

Proof. The policy π is determined before the realization of N is known, and, for
any given j, the policy π is suboptimal when it is used for sequential selection from
the sequence {X1, X2, . . . , Xj}. Thus, if we condition on N = j, we then have

(21) E[LN(π) |N = j] ≤ E[Lj(π
∗
j )].

Now, if we take φ : [0,∞) → [0,∞) to be the piecewise linear extension of the map
j 7→ E[Lj(π

∗
j )], then by Corollary 9 we have that φ is also concave. Finally, by the

suboptimality (21), the definition of φ, and Jensen’s inequality we obtain

E[LN(π)] ≤
∞
∑

j=0

E[Lj(π
∗
j )]P(N = j) = E[φ(N)] ≤ φ(E[N ]) = E[Ln(π

∗
n)]. �
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The next corollary establishes one of the five assertions of Theorem 1. It is an
immediate consequence of Proposition 11 and the lower half of the mean bound
(10) from Bruss and Delbaen (2001).

Corollary 12. For any continuous F we have as n → ∞ that

(22) (2n)1/2 −O(log n) ≤ E[Ln(π
∗
n)].

This is a notable improvement over the bound (4) that had been established by
several earlier investigations; it improves a O(n1/4) error bound all the way down
to O(log n). For the central limit theorem (7), one could still get along with a lower
bound as weak as (2n)1/2 − o(n1/4).

De-Poissonization and Decision Problems.

We get the bound (22) by a de-Poissonization argument in the sense that a
“fixed n” fact is extracted from a “PoissonN” fact. Such arguments are common in
computer science, combinatorics and analysis; one finds many examples in Jacquet
and Szpankowski (1998), Flajolet and Sedgewick (2009, Subsection VIII.5.3), and
Korevaar (2004, Chapter 6). Still, Proposition 11 is our only instance of a de-
Poissonization argument, and the proof of the proposition suggests in part why one
may be hard-pressed to find more.

Decision problems are unlike the classical examples mentioned above. The Pois-
son N problem and the fixed n problem have different optimal policies, and this
mismatch forestalls the kind of direct analytical connection one has in the classical
examples. Conditioning on N = j does engage the problem, but the suboptimality
of the mismatched policy leads only to one-sided relations such as (20) and (21).

4. Smoothness of the Value and Threshold Functions

We need to show that the value functions associated with an admissible distri-
bution F are continuously differentiable on I. As preliminary step, we consider the
differentiability of the threshold functions in a region determined by the critical
values s∗k that were defined in Section 2.

Lemma 13 (Differentiability of the Threshold Functions). Take F to be admissible

and take k > 1. If vk−1 is differentiable on I and s ∈ I ∩ [0, s∗k−1), then hk is

differentiable at s, and one has

(23) h′
k(s) =

v′k−1(s)

v′k−1(hk(s))
≥ 0.

Proof. Set Q(x, y) = −1 + vk−1(x) − vk−1(y). If Qy denotes the partial derivative
of the function Q with respect to y, we know by our hypotheses that Qy exists,
and Lemma 3 implies that the partial derivative Qy is strictly positive. Now, if
(x0, y0) satisfies Q(x0, y0) = 0, then by the implicit function theorem there is a
neighborhood N0 of x0 where one can solve Q(x, y) = 0 uniquely for y, and the
solution y is a differentiable function of x for all x ∈ N0. Moreover, if x < s∗k−1

then (14) tells us Q(x, y) = 0 if and only if y = hk(x), so hk is differentiable as
claimed. Given the differentiability of hk at s, the formula (23) follows directly from
vk−1(x) = 1+vk−1(hk(x)) by differentiation and the chain rule. The non-negativity
of h′

k(s) then follows because the value function vk−1 is strictly decreasing. �
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Proposition 14 (Continuous Differentiability of the Value Functions). If F is

admissible, then for each 1 ≤ k < ∞ the value function s 7→ vk(s) is continuously

differentiable on I, and we have

(24) v′k(s) = −f(s) + {1− F (hk(s)) + F (s)} v′k−1(s) for s ∈ I.

Proof. We argue by induction on k, and we first note for k = 1 that v1(s) = 1−F (s),
so v′1(s) = −f(s) and (24) holds since v0(s) ≡ 0. Next, we assume by induction that
vk−1 is continuously differentiable on I. If s < s∗k−1 then the induction assumption
and Lemma 13 imply that hk is differentiable at s. We then differentiate (13) to
find

v′k(s) = − f(s) + {1− F (hk(s)) + F (s)} v′k−1(s)

+ f(hk(s)){1− vk−1(s) + vk−1(hk(s))}h
′
k(s)

= − f(s) + {1− F (hk(s)) + F (s)} v′k−1(s),

where the last step used the characterization (14) of hk. Alternatively, if s > s∗k−1

we have F (hk(s)) = 1 and (13) says simply that

vk(s) = F (s)vk−1(s) +

∫ ∞

s

{1 + vk−1(x)}f(x) dx.

Differentiation of this integral then gives us (24). Thus, one has that (24) holds on
all of Ik = I \ {s∗k−1}. Moreover, taking left and right limits in (24) gives us

lim
sրs∗

k−1

v′k(s) = −f(s∗k−1) + F (s∗k−1)v
′
k−1(s

∗
k−1) = lim

sցs∗
k−1

v′k(s).

It is almost obvious that these relations imply the continuous differentiability vk,
but to make it crystal clear let γ be the common value of the limits above and
define a continuous function v̄ : I → R by setting

v̄(s) =











v′k(s) if s < s∗k−1

γ if s = s∗k−1

v′k(s) if s > s∗k−1.

Next, we obtain by piecewise integration that

vk(s) = vk(0) +

∫ s

0

v̄(u) du for all s ∈ I,

implying, as expected, that vk is continuously differentiable on I. �

5. Spending Symmetry: Curvature of the Value Functions

For any continuous F the distribution of Ln(π
∗
n) is the same; this is an invariance

property — or a symmetry. When one chooses a particular F , say the uniform
distribution, there is a sense in which one spends symmetry.

All earlier analyses of Ln(π
∗
n) passed directly to the uniform distribution without

any apparent thought about what might be lost or gained by the transition. Still, it
does make a difference how one spends this symmetry. The distribution of Ln(π

∗
n)

is insensitive to F , but the value functions are not.
Specifically, for the uniform distribution the value functions are concave, but

for the exponential distribution the value functions are convex. This change of
curvature gives one access to different estimates. Over the next several sections
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we see how specialization of the driving distribution has a big influence on the
estimation of variances and conditional variances.

Concavity of the Value Functions in the Uniform Model.

We first break symmetry in the conventional way and take F to be the uni-
form distribution on [0, 1]. Specialization of the Bellman recursion (11) defines the
sequence of value functions {vuk : 1 ≤ k < ∞}, and specialization of the characteri-
zation (12) defines the sequence of threshold functions {hu

k : 1 ≤ k < ∞}. Here, we
have by (12) that hu

k(s) ≤ 1 for all s ∈ [0, 1] and 1 ≤ k < ∞.

Lemma 15 (Concavity of the Uniform Value Functions). For each 1 ≤ k < ∞ the

value function vuk : [0, 1] → R
+ is concave.

Proof. Proposition 14 tells us vuk is continuously differentiable on (0, 1), and we
prove concavity by showing that s 7→ (vuk )

′(s) non-increasing on (0, 1). We let Hk

be the assertion

(vuk )
′(s+ ǫ) ≤ (vuk )

′(s) for all s ∈ (0, 1) and 0 < ǫ < 1− s,

and we argue by induction. For k = 1 we have vu1 (s) = 1− s, so (vu1 )
′(s) = −1 and

H1 holds trivially.
Now, if we specialize the derivative recursion (24) to the uniform model we have

(vuk )
′(s) = −1 + {1− hu

k(s) + s}(vuk−1)
′(s), for s ∈ (0, 1),

so if we assume that Hk−1 holds then we have

(vuk )
′(s+ ǫ)− (vuk )

′(s) = {1− hu
k(s) + s}{(vuk−1)

′(s+ ǫ)− (vuk−1)
′(s)}(25)

+ {hu
k(s)− hu

k(s+ ǫ) + ǫ}(vuk−1)
′(s+ ǫ).

Since 0 ≤ s ≤ hu
k(s) ≤ 1, we see from Hk−1 that the first summand on the right-

hand side of (25) is non-positive. Monotonicity of vuk also tells us (vuk−1)
′(s+ǫ) ≤ 0,

so to complete the induction step we just need to check that

(26) g(s, ǫ)
def
= hu

k(s+ ǫ)− hu
k(s) ≤ ǫ.

From the definition of the critical value s∗k−1 we have

g(s, ǫ) =











hu
k(s+ ǫ)− hu

k(s) if s < s+ ǫ < s∗k−1

1− hu
k(s) if s < s∗k−1 ≤ s+ ǫ

0 if s∗k−1 ≤ s < s+ ǫ,

so we only need to check (26) in the first two cases.
For s < s+ ǫ < s∗k−1, we know by Lemma 13 that hu

k(s) is differentiable at s, so
by the induction assumption Hk−1 and the negativity of (vuk−1)

′(s) we have

0 ≤ (hu
k)

′(s) ≤ 1 for all s ∈ (0, s∗k−1).

Thus, hu
k is Lipschitz-1 continuous on (0, s∗k−1), and we have

g(s, ǫ) = hu
k(s+ ǫ)− hu

k(s) ≤ ǫ for all s < s+ ǫ < s∗k−1.

For the second case where s < s∗k−1 ≤ s + ǫ, we first note that hu
k(s

∗
k−1) = 1 and

that hu
k is continuous, so we have

g(s, ǫ) = lim
uրs∗

k−1

{hu
k(u)− hu

k(s)} ≤ lim
uրs∗

k−1

{u− s} = s∗k−1 − s < ǫ,
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where the inequality follows from the Lipschitz-1 property of hu
k . This completes

the second check and the proof of the induction step. �

Convexity of the Value Functions in the Exponential Model.

We now break the symmetry in a second way. We take F (x) = 1−e−x for x ≥ 0,
and we let vek and he

k denote the corresponding value and threshold functions. We
will shortly find that vek is convex on [0,∞) for all k ≥ 1, but we need a preliminary
lemma.

Lemma 16. For 1 ≤ k < ∞ and s ∈ (0,∞) one has

(27) − {1− e−he
k+1(s)+s}−1 ≤ (vek)

′(s).

Proof. By Proposition 14 we know that vek is continuously differentiable and by
(24) we have

(28) (vek)
′(s) = (1− e−s + e−he

k(s))(vek−1)
′(s)− e−s.

We now let Hk be the assertion that

−{1− e−he
k+1(s)+s}−1 ≤ (vek)

′(s), for all s ∈ (0,∞),

and we argue by induction. For k = 1 we have ve1(s) = e−s < 1, so by (12) we have
he
2(s) = ∞. In turn this gives us

−{1− e−he
2(s)+s}−1 = −1 ≤ −e−s = (ve1)

′(s),

which verifies H1.
Next, if we assume that Hk−1 holds and we substitute the lower bound from

Hk−1 into (28), then rearrangement gives us

−{1− e−he
k(s)+s}−1[1− e−s{1− e−he

k(s)+s}]− e−s ≤ (vek)
′(s).

From (19) we have he
k+1(s) ≤ he

k(s), so we now have

−{1− e−he
k+1(s)+s}−1 ≤ −{1− e−he

k(s)+s}−1 ≤ (vek)
′(s),

and this is just what one needs to complete the induction step. �

We now have the main result of this section.

Lemma 17 (Convexity of the Exponential Value Functions). For each 1 ≤ k < ∞,

the value function vek : [0,∞) → R
+ is convex on [0,∞).

Proof. By Proposition 14 we know that vek is continuously differentiable, and we
again argue by induction. This time we take Hk to be the assertion

(vek)
′(s) ≤ (vek)

′(s+ ǫ) for all s ∈ (0,∞) and ǫ > 0.

For k = 1, we have ve1(s) = e−s and (ve1)
′(s) = −e−s so the base case H1 of the

induction is valid.
Now, by (28) applied twice we have

(vek)
′(s)−(vek)

′(s+ ǫ) = [1−e−s−ǫ+e−he
k(s+ǫ)]{(vek−1)

′(s)−(vek−1)
′(s+ ǫ)}(29)

+ {e−he
k(s)[1−e−he

k(s+ǫ)+he
k(s)]−e−s[1−e−ǫ]}(vek−1)

′(s)

− e−s[1−e−ǫ].
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The induction hypothesis Hk−1, tells us that s 7→ vek−1(s) is convex, so by (23) we
have (he

k)
′(s) ≥ 1 for s ∈ (0,∞), and this gives us the bound

−he
k(s+ ǫ) + he

k(s) ≤ −ǫ.

We always have s ≤ he
k(s) and (vek−1)

′(s) ≤ 0, so (29) implies the simpler bound

(vek)
′(s)− (vek)

′(s+ ǫ) ≤ [1− e−s−ǫ + e−he
k(s+ǫ)]{(vek−1)

′(s)− (vek−1)
′(s+ ǫ)}

− e−s[1− e−ǫ][1− e−he
k(s)+s](vek−1)

′(s)

− e−s[1− e−ǫ].

We only need to check that this bound is non-positive. By the induction hypothesis
Hk−1 and s+ ǫ ≤ he

k(s+ ǫ), we see the first term is non-positive. The bound (27)
tells us

−[1− e−he
k(s)+s](vek−1)

′(s) ≤ 1,

so, when we replace −[1 − e−he
k(s)+s](vek−1)

′(s) with its upper bound, we also see
that the second and the third terms sum to zero. This completes the proof of the
induction step and of the lemma. �

6. Martingale Relations and Ln(π
∗
n)

One can represent Ln(π
∗
n) as a sum of functionals of a time non-homogeneous

Markov chain. To see how this goes, we first set M0 = 0 and then we define Mi

recursively by

(30) Mi =

{

Mi−1 if Xi 6∈ [Mi−1, hn−i+1(Mi−1)]

Xi if Xi ∈ [Mi−1, hn−i+1(Mi−1)],

so, less formally, Mi is the maximum value of the elements of the subsequence that
have been selected up to and including time i. Since we accept Xi if and only if
Xi ∈ [Mi−1, hn−i+1(Mi−1)] and since Ln(π

∗
n) counts the number of the observations

X1, X2, . . . , Xn that we accept, we have

(31) Ln(π
∗
n) =

n
∑

i=1

1(Xi ∈ [Mi−1, hn−i+1(Mi−1)]).

It is also useful to set L0(π
∗
n) = 0 and to introduce the shorthand,

Li(π
∗
n)

def
=

i
∑

j=1

1(Xj ∈ [Mj−1, hn−j+1(Mj−1)]), for 1 ≤ i ≤ n.

We now come to a martingale that is central to the rest of our analysis.

Proposition 18 (Optimality Martingale). The process {Yi : i = 0, 1, . . . , n} defined

by setting

(32) Yi = Li(π
∗
n) + vn−i(Mi) for 0 ≤ i ≤ n,

is a martingale with respect to the filtration Fi = σ{X1, X2, . . . , Xi}, 1 ≤ i ≤ n.

Proof. Obviously Yi is Fi-measurable and bounded. Moreover, by the definition of
vn−i(s) we have vn−i(Mi) = E[Ln(π

∗
n)− Li(π

∗
n) | Fi], so

Yi = Li(π
∗
n) + E[Ln(π

∗
n)− Li(π

∗
n) | Fi] = E[Ln(π

∗
n) | Fi]. �
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Since the martingale {Yi : 1 ≤ i ≤ n} is capped by Ln(π
∗
n), we also have the

explicit identity

(33) E[Ln(π
∗
n) | Fi] = Li(π

∗
n) + vn−i(Mi),

which is often useful.

Conditional Variances.

In (32), the term vn−i(Mi) = E[Ln(π
∗
n)−Li(π

∗
n) | Fi] tells us the expected num-

ber of selections that the policy π∗
n will make from {Xi+1, Xi+2, . . . , Xn} given the

current value Mi of the running maximum. There is a useful notion of conditional
variance that is perfectly analogous. Specifically, we set

wn−i(Mi)
def
= Var[Ln(π

∗
n)− Li(π

∗
n) | Fi](34)

= E[{Ln(π
∗
n)− Li(π

∗
n)− vn−i(Mi)}

2 | Fi].

Here, of course, if i = 0 we always have M0 = 0 and

wn(M0) = Var[Ln(π
∗
n)].

The martingale {Yi,Fi}ni=0 defined by (32) leads in a natural way to an infor-
mative representation for the conditional variance (34), and one starts with the
difference sequence

(35) dj = Yj − Yj−1, where 1 ≤ j ≤ n.

By (32) and telescoping of the sum we have

(36)

n
∑

j=i+1

dj = Ln(π
∗
n)− Li(π

∗
n)− vn−i(Mi), for 0 ≤ i ≤ n,

so by orthogonality of the martingale differences we get

(37) wn−i(Mi) = Var[Ln(π
∗
n)− Li(π

∗
n) | Fi] =

n
∑

j=i+1

E[d2j | Fi].

This representation for the conditional variance wn−i can be usefully reframed
by taking a more structured view of the martingale differences (35). Specifically,
we write

(38) dj = Aj +Bj ,

where the variable

(39) Bj
def
= vn−j(Mj−1)− vn−j+1(Mj−1)

represents the change in the martingale Yj when we do not select Xj, and where

(40) Aj
def
= (1 + vn−j(Xj)− vn−j(Mj−1))1(Xj ∈ [Mj−1, hn−j+1(Mj−1)])

is the additional contribution to the change in the martingale Yj when we do select
Xj. Since Bj is Fj−1-measurable, we have

E[d2j | Fj−1] = E[A2
j | Fj−1] + 2Bj E[Aj | Fj−1] +B2

j ,

and we also have 0 = E[dj | Fj−1] = Bj + E[Aj | Fj−1], so

(41) E[d2j | Fj−1] = E[A2
j | Fj−1]−B2

j .
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Now, for j = i+1 to n, we take the conditional expectation in (41) with respect
to Fi. When we sum these terms and recall (37) we get our final representation for
conditional variances

(42) wn−i(Mi) = Var[Ln(π
∗
n)− Li(π

∗
n) | Fi] =

n
∑

j=i+1

{E[A2
j | Fi]− E[B2

j | Fi]}.

The decomposition (42) was our main goal here, but before concluding the section
we should make one further inference from (38). By the defining representation (12)
for hk we have 0 ≤ Aj ≤ 1, and by our bound (15) on the value function differences
we have−1 ≤ Bj ≤ 0. Hence one has a uniform bound on the martingale differences

(43) |dj | = |Aj +Bj | ≤ 1 for 1 ≤ j ≤ n.

7. Inferences from the Uniform Model

We now consider the decompositions of Section 6 when F is the uniform dis-
tribution on [0, 1], and we use superscripts to make this specialization explicit. In
particular, we let Xu

1 , X
u
2 , . . . , X

u
n be the underlying sequence of n independent

uniformly distributed random variables, and we write Mu
i for the value of the last

observation selected up to and including time i ≥ 1 (and, as usual, we set Mu
0 = 0).

Lemma 15 tells us that the value function vuk is concave, and this is crucial to the
proof of the lower bound for the conditional variance of Lu

n(π
∗
n).

Proposition 19 (Conditional Variance Lower Bound). For 0 ≤ i ≤ n one has

1

3
vun−i(M

u
i )− 2 ≤ wu

n−i(M
u
i ).

Proof. Specialization of the representation (42) gives us

(44) wu
n−i(M

u
i ) =

n
∑

j=i+1

E[(Au
j )

2 | Fi]−
n
∑

j=i+1

E[(Bu
j )

2 | Fi],

where the definitions (39) and (40) now become

Bu
j = vun−j(M

u
j−1)− vun−j+1(M

u
j−1)

and

(45) Au
j = (1 + vun−j(Xj)− vun−j(M

u
j−1))1(X

u
j ∈ [Mu

j−1, h
u
n−j+1(M

u
j−1)]).

First, we work toward a lower bound for the leading sum in (44). If we square
both sides of (45) and take conditional expectations, then we have

(46) E[(Au
j )

2 | Fj−1] =

∫ hu
n−j+1(M

u
j−1)

Mu
j−1

{1 + vun−j(x)− vun−j(M
u
j−1)}

2 dx.

By Lemma 15 the map x 7→ vun−j(x) is concave in x, so the line through the points
(Mu

j−1, 1) and (hu
n−j+1(M

u
j−1), 0) provides a lower bound on the integrand in (46).

Integration of this linear lower bound then gives

(47)
1

3

(

hu
n−j+1(M

u
j−1)−Mu

j−1

)

≤

∫ hu
n−j+1(M

u
j−1)

Mu
j−1

{1 + vun−j(x) − vun−j(M
u
j−1)}

2 dx.
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From the definition of Lu
i (π

∗
n) we have the identity

n
∑

j=i+1

E[hu
n−j+1(M

u
j−1)−Mu

j−1 | Fi] = E[Lu
n(π

∗
n)− Lu

i (π
∗
n) | Fi] = vun−i(M

u
i ),

so (46) and (47) give us

(48)
1

3
vun−i(M

u
i ) ≤

n
∑

j=i+1

E[(Au
j )

2 | Fi].

Now, to work toward an upper bound on E[(Bu
j )

2 | Fi], we first note by the
crude Lemma 5 that

(49) (Bu
j )

2 =
(

vun−j(M
u
j−1)− vun−j+1(M

u
j−1)

)2
≤
(

hu
n−j+1(M

u
j−1)−Mu

j−1

)2
.

The definition (30) of the running maximum Mu
j , the uniform distribution of Xu

j ,
and calculus give us the identity

E[Mu
j −Mu

j−1 | Fj−1] =

∫ hu
n−j+1(M

u
j−1)

Mu
j−1

(x−Mu
j−1) dx(50)

=
1

2

(

hu
n−j+1(M

u
j−1)−Mu

j−1

)2
,

so (49) gives us the succinct bound

(Bu
j )

2 ≤ 2E[Mu
j −Mu

j−1 | Fj−1].

Now we take the conditional expectation with respect to Fi and sum over i < j ≤ n.
Telescoping then gives us

(51)
n
∑

j=i+1

E[(Bu
j )

2 | Fi] ≤ 2E[Mu
n −Mu

i | Fi] ≤ 2,

where, in the last step, we used 0 ≤ Mu
i ≤ Mu

n ≤ 1. The representation (44) and
the bounds (48) and (51) complete the proof of the lemma. �

A Cauchy-Schwarz Argument.

If we take the total expectation in (50), then we have

(52) E[
(

hu
n−j+1(M

u
j−1)−Mu

j−1

)2
] = 2{E[Mu

j ]− E[Mu
j−1]},

and, since E[(hu
n−j+1(M

u
j−1)−Mu

j−1)] is the unconditional probability that we ac-
cept the j’th element of the sequence, one might hope to estimate E[Ln(π

∗
n)] with

help from (52) and a Cauchy-Schwarz argument.
In fact, by two applications of the Cauchy-Schwarz inequality, we get

E[Lu
n(π

∗
n)] =

n
∑

j=1

E[hu
n−j+1(M

u
j−1)−Mu

j−1]

≤ n1/2







n
∑

j=1

(E[hu
n−j+1(M

u
j−1)−Mu

j−1])
2







1/2

≤ n1/2







n
∑

j=1

E

[

(

hu
n−j+1(M

u
j−1)−Mu

j−1

)2
]







1/2

,
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and, when we replace all of the summands using (52), we get a telescoping sum

E[Lu
n(π

∗
n)] ≤ n1/2







2

n
∑

j=1

{E[Mu
j ]− E[Mu

j−1]}







1/2

= (2n)1/2{E[Mu
n ]}

1/2.

We have E[Mu
n ] < 1 since the support ofMu

n equals [0, 1], and, since the distribution
of Lu

n(π
∗
n) does not depend on F , we find for all continuous F that

(53) E[Ln(π
∗
n)] < (2n)1/2.

This recaptures the mean upper bound (3) of Bruss and Robertson (1991) and
Gnedin (1999) which was discussed in the introduction.

Here we should note that Bruss and Delbaen (2001) also used a Cauchy-Schwarz
argument to show that for PoissonNν with mean ν, one has the analogous inequality

(54) E[LNν
(π∗

Nν
)] ≤ (2ν)1/2.

We know by Proposition 11 that for ν = n we have E[LNn
(π∗

Nn
)] ≤ E[Ln(π

∗
n)]

but, even so, the bound (54) does not help directly with (53) — or vice versa. In
addition to the usual issue that “policies do not de-Poissonize,” there is the real a
priori possibility that E[LNn

(π∗
Nn

)] might be much smaller than E[Ln(π
∗
n)].

8. Inferences from the Exponential Model

Now we consider the exponential distribution F (x) = 1 − e−x, for x ≥ 0,
and, as before, we use superscripts to make this specialization explicit. Thus
Xe

1 , X
e
2 , . . . , X

e
n denotes a sequence of n independent, mean one, exponential ran-

dom variables, and M e
i denotes the value of the last observation selected up to and

including time i ≥ 1 (and, again, we set M e
0 = 0). This time Lemma 17 provides

the critical fact; it tells us that the value function vek is convex, and this is at the
heart of the argument.

Proposition 20 (Conditional Variance Upper Bound). For each 0 ≤ i ≤ n one

has

(55) we
n−i(M

e
i ) ≤

1

3
ven−i(M

e
i ) +

2

3
{1 + log(n− i)}.

The proof roughly parallels that of Proposition 19, but in this case some integrals
are more troublesome to estimate. To keep the argument direct, we extract one
calculation as a lemma.

Lemma 21. For 0 ≤ s < t < ∞ one has

∫ t

s

(

t− x

t− s

)2

e−x dx ≤
1

3
(e−s − e−t) +

2

3
{e−s − e−t(t− s+ 1)}.

Proof. If we set

g(y)
def
= y−2{−6y + e−y(2y3 + 3y2 − 6 + 6ey)} for y ≥ 0,

then by integration and simplification one has for 0 ≤ s < t < ∞ that

e−s

3
g(t− s) =

∫ t

s

(

t− x

t− s

)2

e−x dx −
1

3
(e−s − e−t)−

2

3
{e−s − e−t(t− s+ 1)},
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and the lemma follows if we verify that g(y) ≤ 0 for all y ≥ 0. By the integral
representation

g(y) = y−2

(
∫ y

0

(−6) dx+

∫ y

0

e−x(6 + 6x+ 3x2 − 2x3) dx

)

,

we see that it suffices to show that

6 + 6x+ 3x2 − 2x3 ≤ 6ex for all x ∈ [0,∞),

and the last inequality is obvious from the power series of ex. �

Proof of Proposition 20. Specialization of (42) to the exponential model and sim-
plification give us

(56) we
n−i(M

e
i ) = Var[Le

n(π
∗
n)− Le

i (π
∗
n) | Fi] ≤

n
∑

j=i+1

E[(Ae
j)

2 | Fi],

where Ae
j is given by

Ae
j = (1 + ven−j(X

e
j )− ven−j(M

e
j−1))1(X

e
j ∈ [M e

j−1, h
e
n−j+1(M

e
j−1)]).

Since M e
j−1 is Fj−1-measurable, we have

(57) E[(Ae
j)

2 | Fj−1] =

∫ he
n−j+1(M

e
j−1)

Me
j−1

{1 + ven−j(x) − ven−j(M
e
j−1)}

2e−x dx,

and by Lemma 17 the map x 7→ 1 + ven−j(x) − ven−j(M
e
j−1) is convex in x and

non-negative for all x ∈ [M e
j−1, h

e
n−j+1(M

e
j−1)].

If he
n−j+1(M

e
j−1) < ∞, the line through the left-end point (M e

j−1, 1) and the

right-end point (he
n−j+1(M

e
j−1), 0) provides us with an easy upper bound for the

integrand (57). Specifically, for x ∈ [M e
j−1, h

e
n−j+1(M

e
j−1)], we have that

(58) {1 + ven−j(x) − ven−j(M
e
j−1)}

2e−x ≤

(

he
n−j+1(M

e
j−1)− x

he
n−j+1(M

e
j−1)−M e

j−1

)2

e−x.

On the other hand, if he
n−j+1(M

e
j−1) = ∞, the right-side of (58) is replaced by e−x,

and (58) again holds since 0 ≤ {1 + ven−j(x) − ven−j(M
e
j−1)} ≤ 1.

We now integrate (58) and use the bound of Lemma 21; the representation (57)
then gives us

E[(Ae
j)

2 | Fj−1] ≤
1

3
(e−Me

j−1 − e−he
n−j+1(M

e
j−1))(59)

+
2

3
{e−Me

j−1 − e−he
n−j+1(M

e
j−1)(1 + he

n−j+1(M
e
j−1)−M e

j−1)}.

Now we just need to interpret the two addends on the right-hand side of (59).
The first addend is just the probability that observation Xe

j is selected when the
value of the running maximum is M e

j−1, that is,

(60) E[1(Xe
j ∈ [M e

j−1, h
e
n−j+1(M

e
j−1)]) | Fj−1] = e−Me

j−1 − e−he
n−j+1(M

e
j−1).
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Similarly, the second addend of (59) is the one-period expected increment of the
current running maximum M e

j−1, or, to be explicit,

E[M e
j −M e

j−1 | Fj−1] =

∫ he
n−j+1(M

e
j−1)

Me
j−1

(x−M e
j−1)e

−x dx(61)

= e−Me
j−1 − e−he

n−j+1(M
e
j−1)(1 + he

n−j+1(M
e
j−1)−M e

j−1).

Given the two interpretations (60) and (61), our bound (59) now becomes

E[(Ae
j)

2 | Fj−1] ≤
1

3
E[1(Xe

j ∈ [M e
j−1, h

e
n−j+1(M

e
j−1)]) | Fj−1]

+
2

3
E[M e

j −M e
j−1 | Fj−1].

Next, we recall the variance upper bound (56), take conditional expectations with
respect to Fi, and sum over i+ 1 ≤ j ≤ n, to obtain

we
n−i(M

e
i ) ≤

1

3
E[Le

n(π
∗
n)− Le

i (π
∗
n) | Fi] +

2

3
E[M e

n −M e
i | Fi](62)

=
1

3
ven−i(M

e
i ) +

2

3
E[M e

n −M e
i | Fi],

where in the last step we used the martingale identity (33).
To complete the proof, we only need to estimate the conditional expectation

E[M e
n −M e

i | Fi]. We first set M∗
[i+1,n] = max{Xe

i+1, X
e
i+2, . . . , X

e
n}, and then we

note that

M e
n −M e

i ≤ max{M∗
[i+1,n],M

e
i } −M e

i ≤ M∗
[i+1,n].

When we take the conditional expectations and use the independence of Fi and
{Xe

i+1, X
e
i+2, . . . , X

e
n}, we get

(63) E[M e
n −M e

i | Fi] ≤ E[M∗
[i+1,n] | Fi] = E[M∗

[1,n−i]].

The logarithmic bound for the last term is well-known, but, for completeness, we
just note P(M∗

[1,n−i] ≤ t) = (1− e−t)n−i, so

E[M∗
[1,n−i]] =

∫ ∞

0

1− (1− e−t)n−i dt =
n−i
∑

j=1

j−1 ≤ 1 + log(n− i).

This last estimate then combines with the upper bounds (62) and (63) to complete
the proof of (55). �

9. Combined Inferences: Variance Bounds in General

The variance bounds obtained under the uniform and exponential models are
almost immediately applicable to general continuous F . One only needs to make
an appropriate translation.

Proposition 22. For any continuous F and for all 0 ≤ i ≤ n one has the condi-

tional variance bounds

(64)
1

3
vn−i(Mi)− 2 ≤ wn−i(Mi) ≤

1

3
vn−i(Mi) +

2

3
{1 + log(n− i)}.

In particular, for i = 0 one has M0 = 0 and

(65)
1

3
E[Ln(π

∗
n)]− 2 ≤ Var[Ln(π

∗
n)] ≤

1

3
E[Ln(π

∗
n)] +

2

3
{1 + logn}.
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Proof. If X1, X2, . . . , Xn is a sequence of independent random variables with the
continuous distribution F , then the familiar transformations

Xu
i

def
= F (Xi) and Xe

i
def
= − log{1− F (Xi)}

define sequences that have the uniform and exponential distribution, respectively.
These transformations give us a dictionary that we can use to translate results
between our models; specifically we have:

vk(s) = vuk (F (s)) and vk(s) = vek(− log{1− F (s)}),

Mu
i = F (Mi) and M e

i = − log{1− F (Mi)},

wn−i(Mi) = wu
n−i(M

u
i ) and wn−i(Mi) = we

n−i(M
e
i ).

Proposition 19 tells us that

1

3
vun−i(M

u
i )− 2 ≤ wu

n−i(M
u
i ),

so the first column of the dictionary gives us the first inequality of (64). Similarly,
Proposition 20 tells us

we
n−i(M

e
i ) ≤

1

3
ven−i(M

e
i ) +

2

3
{1 + log(n− i)},

and the second column of the dictionary gives us the second inequality of (64). �

10. The Central Limit Theorem

Our proof of the central limit theorem for Ln(π
∗
n) depends on the most basic

version of the martingale central limit theorem. Brown (1971), McLeish (1974),
and Hall and Heyde (1980) all give variations containing this one.

Proposition 23 (Martingale Central Limit Theorem). For each n ≥ 1, we consider
a martingale difference sequence {Zn,j : 1 ≤ j ≤ n} with respect to the sequence of

increasing σ-fields {Fn,j : 0 ≤ j ≤ n}. If

(66) max
1≤j≤n

‖ Zn,j ‖∞→ 0 as n → ∞

and

(67)

n
∑

j=1

E[Z2
n,j|Fj−1]

p
−→ 1 as n → ∞,

then we have the convergence in distribution

n
∑

j=1

Zn,j =⇒ N(0, 1) as n → ∞.

For each n ≥ 1, we consider a driving sequence Xn,1, Xn,2, . . . , Xn,n of indepen-
dent random variables with the continuous distribution F . We then set

Zn,j
def
=

31/2dn,j
(2n)1/4

, for 1 ≤ j ≤ n,

where the dn,j’s are the differences defined by (35), although we now make explicit
the dependence of the differences on n. This is a martingale difference sequence
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with respect to the increasing sequence of σ-fields Fn,j = σ{Xn,1, Xn,2, . . . , Xn,j},
and when we take i = 0 in (36) we get the basic representation

n
∑

j=1

Zn,j =
31/2{Ln(π

∗
n)− E[Ln(π

∗
n)]}

(2n)1/4
.

We know from (43) that we always have |dn,j | ≤ 1 so, by our normalization, the
negligibility condition (66) is trivially valid. The heart of the matter is the proof
of the weak law (67); more explicitly, we need to show that

(68)
n
∑

j=1

3E[d2n,j | Fn,j−1]

(2n)1/2
p

−→ 1 as n → ∞.

The variance bounds (65) and the asymptotic relation (2) for the mean imply

Var[Ln(π
∗
n)] ∼

1

3
E[Ln(π

∗
n)] ∼

(2n)1/2

3
as n → ∞,

and telescoping and orthogonality of the differences {dn,j : 1 ≤ j ≤ n} give us

Var[Ln(π
∗
n)] = E

[ n
∑

j=1

E[d2n,j ]

]

= E

[ n
∑

j=1

E[d2n,j | Fn,j−1]

]

,

so the weak law (68) will follow from Chebyshev’s inequality if one proves that

(69) Var

[ n
∑

j=1

E[d2n,j | Fn,j−1]

]

= o(n) as n → ∞.

The proof of Theorem 1 is completed once one confirms the relation (69), and
the next lemma gives us more than we need.

Lemma 24 (Conditional Variance Bound). If F is continuous, then for n ≥ 1,
one has

Var

[ n
∑

j=1

E[d2n,j | Fn,j−1]

]

≤ {18 + (logn)2}(2n)1/2.

Proof. We fix n ≥ 1 and simplify the notation by dropping the subscript n on the
martingale difference sequence and the filtration. We then let

V
def
=

n
∑

j=1

E[d2j | Fj−1]

and consider the martingale {Vi : 0 ≤ i ≤ n} defined by setting

Vi
def
= E[V | Fi ] for 0 ≤ i ≤ n.

One has the initial and terminal values

V0 =

n
∑

j=1

E[d2j ] = Var[Ln(π
∗
n)] and Vn = V,

and if we introduce the new martingale differences ∆i = Vi −Vi−1, 1 ≤ i ≤ n, then
telescoping and orthogonality give us

(70) Vn − V0 =

n
∑

i=1

∆i and Var[Vn] = Var

[ n
∑

j=1

E[d2j | Fj−1]

]

=

n
∑

i=1

E[∆2
i ].
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For 1 ≤ j ≤ i+ 1 all of the summands E[d2j | Fj−1] are Fi-measurable, so we have

∆i =

i
∑

j=1

E[d2j | Fj−1] + E

[ n
∑

j=i+1

E[d2j | Fj−1] | Fi

]

−
i
∑

j=1

E[d2j | Fj−1]− E

[ n
∑

j=i+1

E[d2j | Fj−1] | Fi−1

]

.

The first and the third sum cancel, and we obtain

∆i =
n
∑

j=i+1

E[d2j | Fi]− E

[ n
∑

j=i+1

E[d2j | Fi] | Fi−1

]

(71)

= wn−i(Mi)− E[wn−i(Mi) | Fi−1],

where in the last line we twice used the formula (37) for the conditional variance.
Next, we set

Gi
def
= {ω : Xi(ω) ∈ [Mi−1(ω), hn−i+1(Mi−1(ω))]},

so, in words, Gi is the set of all ω for which the observation Xi(ω) is selected at
time i under the optimal policy π∗

n. By the recursive definition (30) of the running
maximum Mi, we then have the decomposition

(72) wn−i(Mi) = wn−i(Mi−1) + {wn−i(Xi)− wn−i(Mi−1)}1(Gi).

In fact, one can replace wn−i with any function here, and it will be useful to also
note that

(73) vn−i(Mi) = vn−i(Mi−1) + {vn−i(Xi)− vn−i(Mi−1)}1(Gi).

The first summand on the right-hand side of (72) is Fi−1-measurable, so, if we
rewrite (71) using (72) we obtain

∆i = {wn−i(Xi)−wn−i(Mi−1)}1(Gi)−E[{wn−i(Xi)−wn−i(Mi−1)}1(Gi) | Fi−1].

When we square this identity and take the conditional expectation we find

(74) E[∆2
i | Fi−1] ≤ E[{wn−i(Xi)− wn−i(Mi−1)}

2
1(Gi) | Fi−1],

and all that remains is to estimate the difference {wn−i(Xi)− wn−i(Mi−1)}1(Gi).
Now consider the upper bound in (64) and replace wn−i(Mi) and vn−i(Mi) with

their decompositions (72) and (73). When we move the term wn−i(Mi−1) to the
right side, we have

{wn−i(Xi)− wn−i(Mi−1)}1(Gi) ≤
1

3
{vn−i(Xi)− vn−i(Mi−1)}1(Gi)(75)

+
1

3
vn−i(Mi−1)− wn−i(Mi−1)

+
2

3
(1 + logn).

By the lower bound in (64) the second summand is bounded by two, and, to estimate
the first summand, we note that the characterization (12) for the optimal threshold
function and the monotonicity of the value function give us

(76)
1

3
| vn−i(Xi)− vn−i(Mi−1) |1(Gi) ≤

1

3
1(Gi).
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The left-hand side of (75) is zero off of the set Gi, so using (76) we see that (75)
gives us

(77) {wn−i(Xi)− wn−i(Mi−1)}1(Gi) ≤ {3 +
2

3
logn}1(Gi).

A parallel argument gives us the complementary inequality,

(78) − {3 +
2

3
logn}1(Gi) ≤ {wn−i(Xi)− wn−i(Mi−1)}1(Gi).

Specifically, one now begins with the lower bound in (64) and replaces wn−i(Mi)
and vn−i(Mi) with their decompositions.

Taken together (77) and (78) imply

|wn−i(Xi)− wn−i(Mi−1) | 1(Gi) ≤ {3 +
2

3
logn}1(Gi),

so we can square both sides and take conditional expectations with respect to Fi−1.
By (74) and the definition of Gi, we then have

E[∆2
i | Fi−1] ≤ {18 +

8

9
(log n)2}E[1(Xi ∈ [Mi−1, hn−i+1(Mi−1)]) | Fi−1],

so if we drop the factor 8/9, take total expectations, and sum we get

(79)

n
∑

i=1

E[∆2
i ] ≤ {18 + (log n)2}

n
∑

i=1

E[1(Xi ∈ [Mi−1, hn−i+1(Mi−1)])].

By (70) the sum on the left is variance of Vn =
∑n

j=1 E[d
2
j | Fj−1], and by (31) the

sum of the expected values on the right is equal to E[Ln(π
∗
n)]. Finally, we know

that E[Ln(π
∗
n)] < (2n)1/2 from (3) and the argument of Section 7, so (79) completes

the proof of the lemma. �

11. Concluding Observations

The idea of “spending symmetry” that was mentioned in Section 5 originates
with an instructive essay of Tao (2009, Section 1.4). This notion can be cast in
stunning generality, but here it turns out to be resolutely concrete and very useful.

The variance lower bound of (65) had been known to us for some years, but
dogged analysis of the uniform model left us without an upper bound of comparable
quality. A general Markov decision problem (MDP) bound in Arlotto, Gans and
Steele (2014) would give Var[Ln(π

∗
n)] ≤ E[Ln(π

∗
n)], but here the MDP bound is too

weak by a factor of three. It cannot serve even as good motivation for a central
limit theorem.

With such a long tradition of immediate reduction to the uniform model, it was
surprising to see how fruitful it could be to simultaneously use the exponential model
— even though the distribution of Ln(π

∗
n) is the same under either model. Still,

with different value functions come different qualitative features, and the convexity
of the value functions under the exponential model leads in a natural way to the
needed upper bound of the variance. This opened up the way to the rest of the
analysis.

We mentioned one open problem earlier (see Remark 10), and there is a re-
lated problem that deserves some thought. In the offline selection problem, the
distribution of the length of the longest increasing subsequence of a sequence of n
independent uniformly distributed random variables is the same as the distribution
of the length of the longest increasing subsequence of a random permutation of the
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integers {1, 2, . . . , n}. This equivalence is lost in the online selection problem, and
it is unclear how much of Theorem 1 can be recaptured.

For example, if we write Lperm
n (π∗

n) for the analog of Ln(π
∗
n) where now one

chooses a random permutation of {1, 2, . . . , n}, then, by an argument of Burgess
Davis given in Samuels and Steele (1981), one does have E[Lperm

n (π∗
n)] ∼ (2n)1/2 as

n → ∞. Unfortunately, mean bounds like those of Theorem 1 cannot be achieved
in this way, and variance bounds that would be good enough to support a central
limit theorem are even more remote. Nevertheless, some analog of Theorem 1 is
quite likely to be true.
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Veršik, A. M. and Kerov, S. V. (1977), ‘Asymptotic behavior of the Plancherel measure of the sym-
metric group and the limit form of Young tableaux’, Dokl. Akad. Nauk SSSR 233(6), 1024–
1027.


	University of Pennsylvania
	ScholarlyCommons
	9-2015

	Optimal Online Selection of a Monotone Subsequence: A Central Limit Theorem
	Alessandro Arlotto
	Vinh V. Nguyen
	J. Michael Steele
	Recommended Citation

	Optimal Online Selection of a Monotone Subsequence: A Central Limit Theorem
	Abstract
	Keywords
	Disciplines


	1. Introduction
	First Connection: The Tracy-Widom Law
	Second Connection: The Bruss-Delbaen Central Limit Theorem
	Organization of the Analysis

	2. Structure of the Value Functions
	Optimal Threshold Functions
	Value Function Submodularity

	3. Intermezzo: Possibilities for De-Poissonization
	De-Poissonization and Decision Problems

	4. Smoothness of the Value and Threshold Functions
	5. Spending Symmetry: Curvature of the Value Functions 
	Concavity of the Value Functions in the Uniform Model
	Convexity of the Value Functions in the Exponential Model

	6. Martingale Relations and Ln(*n)
	Conditional Variances

	7. Inferences from the Uniform Model
	A Cauchy-Schwarz Argument

	8. Inferences from the Exponential Model
	9. Combined Inferences: Variance Bounds in General
	10. The Central Limit Theorem
	11. Concluding Observations
	References

