2,397 research outputs found

    The Engel elements in generalized FC-groups

    Full text link
    We generalize to FC*, the class of generalized FC-groups introduced in [F. de Giovanni, A. Russo, G. Vincenzi, Groups with restricted conjugacy classes, Serdica Math. J. 28 (2002), 241-254], a result of Baer on Engel elements. More precisely, we prove that the sets of left Engel elements and bounded left Engel elements of an FC*-group G coincide with the Fitting subgroup; whereas the sets of right Engel elements and bounded right Engel elements of G are subgroups and the former coincides with the hypercentre. We also give an example of an FC*-group for which the set of right Engel elements contains properly the set of bounded right Engel elements.Comment: to appear in "Illinois Journal of Mathematics

    A model for alignment between microscopic rods and vorticity

    Full text link
    Numerical simulations show that microscopic rod-like bodies suspended in a turbulent flow tend to align with the vorticity vector, rather than with the dominant eignevector of the strain-rate tensor. This paper investigates an analytically solvable limit of a model for alignment in a random velocity field with isotropic statistics. The vorticity varies very slowly and the isotropic random flow is equivalent to a pure strain with statistics which are axisymmetric about the direction of the vorticity. We analyse the alignment in a weakly fluctuating uniaxial strain field, as a function of the product of the strain relaxation time τs\tau_{\rm s} and the angular velocity ω\omega about the vorticity axis. We find that when ωτs≫1\omega\tau_{\rm s}\gg 1, the rods are predominantly either perpendicular or parallel to the vorticity

    Parametric and numerical modeling tools to forecast hydrogeological impacts of a tunnel

    Get PDF
    The project of interest involving a hydroelectrical diversion tunnel through a crystalline rock massif in the Alps required a detailed hydrogeological study to forecast the magnitude of water inflows within the tunnel and possible effects on groundwater flow The tunnel exhibits a length of 9.5 km and is located on the right side of the Toce River in Crevoladossola (Verbania Province, Piedmont region, northern Italy). Under the geological framework of the Alps, the tunnel is located within the Lower Penninic Frappes in the footwall of the Simplon Normal Fault, and the geological succession is mostly represented by Antigorio gneiss (metagranites) and Baceno metasediments (metacarbonates). Due to the presence of important mineralized springs for commercial mineral water purposes, the above mentioned hydrogeological study focused on both quantity and quality aspects via rainfall data analysis, monitoring of major spring flow rates, monitoring of hydraulic heads and pumping rates of existing wells/boreholes, hydrochemical and isotopic analysis of springs and boreholes and hydraulic tests (Lefranc and Lugeon). The resulting conceptual model indicated dominant low-permeability (aquitard) behavior of the gneissic rock masses, except under conditions of intense fracturing due to tectonization, and aquifer behavior of the metasedimentary rocks, particularly when interested by dissolution. Groundwater flow systems are mainly controlled by gravity. The springs located near the Toce River were characterized by high mineralization and isotopic ratios, indicating long groundwater flow paths. Based on all the data collected and analyzed, two parametric methods were applied: 1) the Dematteis method, slightly adapted to the case study and the available data, which allows assessment of both potential inflows within the tunnel and potential impacts on springs (codified as the drawdown hazard index; DHI); 2) the Cesano method, which only allow assessment of potential inflows within the tunnel, thereby discriminating between major and minor inflows. Contemporarily, a groundwater flow model was implemented with the equivalent porous medium (EPM) approach in MODFLOW-2000. This model was calibrated under steady-state conditions against the available data (groundwater levels inside wells/piezometers and elevation and flow rate of springs). The Dematteis method was demonstrated to be more reliable and suitable for the site than was the Cesano method. This method was validated considering a tunnel through gneissic rock masses, and this approach considered intrinsic parameters of rock masses more notably than morphological and geomorphological factors were considered. The Cesano method relatively overestimated tunnel inflows, considering variations in the topography and overburden above the tunnel. Sensitivity analysis revealed a low sensitivity of these parametric methods to parameter values, except for the rock quality designation (RQD) employed to represent the fracturing degree. The numerical model was calibrated under ante-operam conditions, and sensitivity analysis evaluated the influence of uncertainties in the hydraulic conductivity (K) values of the different hydrogeological units.The hydraulic head distribution after tunnel excavation was forecasted considering three scenarios, namely, a draining tunnel, tunnel as a eater loss source, and tunnel sealed along its aquifer sectors, considering 3 levels of K reduction. Tunnel impermeabilization was very effective, thus lowering the drainage rate and impact on springs. The model quantitatively defined tunnel inflows and the effects on spring flow at the surface in terms of flow rate decrease. The Dematteis method and numerical model were combined to obtain a final risk of impact on the springs. This study likely overestimated the risk because all the values assigned to the parameters were chosen in a conservative way, and the steady-state numerical simulations were also very conservative (the transient state in this hydrogeological setting supposedly lasts 1-3 years). Monitoring of the tunnel and springs during tunnel boring could facilitate the feedback process

    State and Local Legislation: More Hurdles for Unmanned Aerial Systems (UAS) Integration?

    Get PDF
    Congressional mandate for the integration of unmanned aerial systems (UAS) in the National Airspace System (NAS) to take place by 2015, significant interest in UAS investment, operations, and research has taken place Complex array of requirements and restrictions have been placed on UAS stakeholders by the Federal Aviation Administration (FAA) Limited Congressional legislative guidanc

    The Role of Unmanned Aircraft Systems (UAS) in Disaster Response and Recovery Efforts: Historical, Current and Future

    Get PDF
    A wide range of legislation has been proposed or put into place that restricts the use of unmanned systems. These actions by legislators and regulators will stifle the growth of this technology and the associated surrounding industry. The largest obstacle to the proliferation of UAS in the U.S. is the FAA. The FAA has designated the location of six test sites that are anticipated to allow for less restrictive and formative research to assess the technologies that the FAA has claimed need to exist in order to integrate UAS into the NAS. Further complicating the adoption of UAS for beneficent causes is the plethora of local and state legislation and regulation. Whilst many state restrictions do have built-in caveats to potentially allow for disaster support utilizing UAS, not all are so explicit. All of these actions make the adoption ofUAS in disaster areas more complex and may sway associated agencies away from purchasing UAS for these uses in the future. This research outlines historical uses of UAS to provide basis for the adoption in disaster relief. Examples of past use of unmanned systems in exigent event response are provided including post-hurricane rescue, wild fire monitoring, and landslide disaster relief. An example of missed opportunities with UAS, the Boston Marathon bombing is also outlined. Current UAS usage in first response is explained including types of platforms and sensors that show promise in such operations. Future considerations for UAS adoption in disaster efforts are outlined

    Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    Get PDF
    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory implementations of EI can be correctly described with the use of the simplified geometrical optics. Besides enabling the derivation of simple expressions for the sensitivity and spatial resolution of a given EI setup, this model also highlights the EI’s achromaticity. With the aim of improving image quality, as well as to take advantage of the fact that all energies in the spectrum contribute to the image contrast, we carried out EI acquisitions using a photon-counting energy-resolved detector. The obtained results demonstrate that this approach has great potential for future laboratory implementations of EI. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Kinematic Effects in Large Transport Aircraft

    Get PDF
    The control of an aircraft relies on sensory feedback. It follows that any aspect that could create a situation where that feedback is faulty can lead to unintended outcomes. The size of very large jet aircraft can result in kinematic effects that impact the perceptions of the flight crew. Due to the large amount of inertia involved, coupled with aerodynamic factors, when the aircraft pitch (θ) is initially changed, the short term actual motion of the aircraft, as viewed from the center of gravity, remains relatively unchanged. As a consequence of aircraft design, this results in the flight deck changing relative height as a consequence of the vertical rotation while the flight path stays relatively constant. Near to the ground (when external visual cues of height are most needed), a pilot may incorrectly believe that the aircraft flight path has changed when it has not. Furthermore, in large aircraft the eye-height of the pilot when landing is quite high, and thus increases the probability that the pilot will not be aware of relatively small changes in actual aircraft height. The aircraft pitch changes and large height off the ground can result in the pilot becoming unaware of the aircraft height during landing with serious consequences. Once recognized, all of these factors can be mitigated through training and visual aids. Further research should be conducted and pilots should be trained to recognize and mitigate the kinematic issues pertinent to large transport aircraft

    Evaluation of carcass and meat traits of Muscovy duck fed with black soldier fly partially defatted meal

    Get PDF
    The aim of this study was to evaluate the carcass characteristics and breast meat quality in Muscovy duck (Cairina moschata domestica) fed different inclusion levels of a partially defatted black soldier fly larva (BSF) meal. A total of 256 Muscovy ducklings (average live weight, LW: 71.32\ub12.70 g) were reared from day 3 to day 48 and randomly allotted in 32 pens (8 replicates/treatment). Four different diets were formulated with increasing substitution level of corn gluten meal with BSF larva meal (0, 3, 6 and 9%; BSF0, BSF3, BSF6 and BSF9, respectively) and divided in 3 feeding phases: starter (1-14 days), grower (14-35 days) and finisher (35-48 days). At day 48, 2 animals/replicate were slaughtered and dissected to determine their carcass yields. The weights of spleen, bursa of Fabricius, liver, heart and abdominal fat were recorded. Breast and thigh muscles were then excised from 16 ducks/treatment and weighted. Ultimate pH (pHu) and L*, a*, b* colour values were then measured on breast muscle. The collected data were tested by means of oneway ANOVA evaluating the effect of dietary BSF inclusion level by polynomial contrasts. Significance was declared at P<0.05. The inclusion of BSF did not affect final LW (2,515.68\ub192.42 g on average). Hot and cold carcass weights showed a quadratic response (P<0.05) to increasing BSF larva meal, with a minimum corresponding to BSF6; however, refrigeration losses were not affected by treatments. Weight of spleen, bursa of Fabricius, liver and heart did not differ among treatments. The weight of abdominal fat showed a quadratic response to increasing BSF meal with a minimum corresponding to BSF6 group (P<0.05). Breast and thigh yields, pHu and L*, a*, b* colour values did not differ among groups. With the exception of BSF6, the inclusion of BSF meal did not affect meat traits and carcass characteristics, confirming the potential use of BSF meal in Muscovy duck diets
    • …
    corecore