152 research outputs found

    Diversification of myco-heterotrophic angiosperms: evidence from Burmanniaceae.

    Get PDF
    Background - Myco-heterotrophy evolved independently several times during angiosperm evolution. Although many species of myco-heterotrophic plants are highly endemic and long-distance dispersal seems unlikely, some genera are widely dispersed and have pantropical distributions, often with large disjunctions. Traditionally this has been interpreted as evidence for an old age of these taxa. However, due to their scarcity and highly reduced plastid genomes our understanding about the evolutionary histories of the angiosperm myco-heterotrophic groups is poor. Results - We provide a hypothesis for the diversification of the myco-heterotrophic family Burmanniaceae. Phylogenetic inference, combined with biogeographical analyses, molecular divergence time estimates, and diversification analyses suggest that Burmanniaceae originated in West Gondwana and started to diversify during the Late Cretaceous. Diversification and migration of the species-rich pantropical genera Burmannia and Gymnosiphon display congruent patterns. Diversification began during the Eocene, when global temperatures peaked and tropical forests occurred at low latitudes. Simultaneous migration from the New to the Old World in Burmannia and Gymnosiphon occurred via boreotropical migration routes. Subsequent Oligocene cooling and breakup of boreotropical flora ended New-Old World migration and caused a gradual decrease in diversification rate in Burmanniaceae. Conclusion - Our results indicate that extant diversity and pantropical distribution of myco-heterotrophic Burmanniaceae is the result of diversification and boreotropical migration during the Eocene when tropical rain forest expanded dramaticall

    Mycoheterotrophic plants preferentially target arbuscular mycorrhizal fungi that are highly connected to autotrophic plants

    Get PDF
    How mycoheterotrophic plants that obtain carbon and soil nutrients from fungi are integrated in the usually mutualistic arbuscular mycorrhizal networks is unknown. Here, we compare autotrophic and mycoheterotrophic plant associations with arbuscular mycorrhizal fungi and use network analysis to investigate interaction preferences in the tripartite network. We sequenced root tips from autotrophic and mycoheterotrophic plants to assemble the combined tripartite network between autotrophic plants, mycorrhizal fungi, and mycoheterotrophic plants. We compared plant-fungal interactions between mutualistic and antagonist networks, and searched for a diamond-like module defined by a mycoheterotrophic and an autotrophic plant interacting with the same pair of fungi to investigate whether pairs of fungi simultaneously linked to plant species from each interaction type were overrepresented throughout the network. Mycoheterotrophic plants as a group interacted with a subset of the fungi detected in autotrophs but are indirectly linked to all autotrophic plants, and fungi with high overlap in autotrophic partners tend to interact with a similar set of mycoheterotrophs. Moreover, pairs of fungi sharing the same mycoheterotrophic and autotrophic plant species are overrepresented in the network. We hypothesize that the maintenance of antagonistic interactions is maximized by targeting well-linked mutualistic fungi, thereby minimizing the risk of carbon supply shortages

    Dark septate endophytes and arbuscular mycorrhizal fungi (Paris‐morphotype) affect the stable isotope composition of 'classically' non-mycorrhizal plants

    Get PDF
    The vast majority of terrestrial plants exchange nutrients with fungal partners forming different mycorrhizal types. The minority of plants considered as non-mycorrhizal, however, are not necessarily free of any fungi, but are frequently colonized by elusive fungal endophytes, such as dark septate endophytes (DSE) or fine root endophytes (FRE). While a functional role of FRE in improvement of nutrient gain was recently elucidated, the function of DSE is still in discussion and was here addressed for 36 plant species belonging to the families Equisetaceae, Cypereaceae and Caryophyllaceae. Molecular and microscopic staining approaches were conducted to verify the presence of DSE in the investigated species. Stable isotope natural abundances of the elements carbon, nitrogen, hydrogen and oxygen and total nitrogen concentrations were analyzed for the respective species of the target plant families and accompanying mycorrhizal and non-mycorrhizal (Brassicaceae) plant species. Staining approaches confirmed the presence of DSE in all investigated species within the families Equisetaceae, Cyperaceae and Caryophyllaceae. A co-colonization with Paris-type arbuscular mycorrhiza (AM) was occasionally found by staining and molecular approaches in species of the Equisetaceae. Species of the Equisetaceae, Cyperaceae and Caryophyllaceae were significantly 15N-enriched in comparison to accompanying plants. In addition, a significant 13C and 2H enrichment and increased total nitrogen concentrations were found for representatives of the Equisetaceae. The 15N-enrichment found here for representatives of Equisetaceae, Cyperaceae and Caryophyllaceae provides evidence for a functional role of the ubiquitous DSE fungi. DSE fungi obviously provide access to 15N-enriched soil organic compounds probably in exchange for organic carbon compounds from plant photosynthesis. As indicated by additional 13C- and 2H-enrichments, representatives of the Equisetaceae apparently gain simultaneously organic carbon compounds from their AM fungi of the Paris-morphotype. Thus, species of the Equisetaceae have to be considered as partially, or in case of the achlorophyllous fertile Equisetum arvense, as fully mycoheterotrophic at least in some stages of their life cycle. So far mostly underappreciated fungi classified as DSE are suggested to occupy an ecologically relevant role similar to mycorrhizae and the occurrence of simultaneous functions of DSE and AM fungi in Equisetaceae is proposed

    Fungal metabarcoding data integration framework for the MycoDiversity DataBase (MDDB)

    Get PDF
    Fungi have crucial roles in ecosystems, and are important associates for many organisms. They are adapted to a wide variety of habitats, however their global distribution and diversity remains poorly documented. The exponential growth of DNA barcode information retrieved from the environment is assisting considerably the traditional ways for unraveling fungal diversity and detection. The raw DNA data in association to environmental descriptors of metabarcoding studies are made available in public sequence read archives. While this is potentially a valuable source of information for the investigation of Fungi across diverse environmental conditions, the annotation used to describe environment is heterogenous. Moreover, a uniform processing pipeline still needs to be applied to the available raw DNA data. Hence, a comprehensive framework to analyses these data in a large context is still lacking. We introduce the MycoDiversity DataBase, a database which includes public fungal metabarcoding data of environmental samples for the study of biodiversity patterns of Fungi. The framework we propose will contribute to our understanding of fungal biodiversity and aims to become a valuable source for large-scale analyses of patterns in space and time, in addition to assisting evolutionary and ecological research on Fungi

    A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses.

    Get PDF
    Phylogenies are a central and indispensable tool for evolutionary and ecological research. Even though most angiosperm families are well investigated from a phylogenetic point of view, there are far less possibilities to carry out large-scale meta-analyses at order level or higher. Here, we reconstructed a large-scale dated phylogeny including nearly 1/8th of all angiosperm species, based on two plastid barcoding genes, matK (incl. trnK) and rbcL. Novel sequences were generated for several species, while the rest of the data were mined from GenBank. The resulting tree was dated using 56 angiosperm fossils as calibration points. The resulting megaphylogeny is one of the largest dated phylogenetic tree of angiosperms yet, consisting of 36,101 sampled species, representing 8,399 genera, 426 families and all orders. This novel framework will be useful for investigating different broad scale research questions in ecological and evolutionary biology

    Temporal and palaeoclimatic context of the evolution of insular woodiness in the Canary Islands

    Get PDF
    Insular woodiness (IW), referring to the evolutionary transition from herbaceousness toward woodiness on islands, has arisen more than 30 times on the Canary Islands (Atlantic Ocean). One of the IW hypotheses suggests that drought has been a major driver of wood formation, but we do not know in which palaeoclimatic conditions the insular woody lineages originated. Therefore, we provided an updated review on the presence of IW on the Canaries, reviewed the palaeoclimate, and estimated the timing of origin of woodiness of 24 insular woody lineages that represent a large majority of the insular woody species diversity on the Canaries. Our single, broad‐scale dating analysis shows that woodiness in 60%–65% of the insular woody lineages studied originated within the last 3.2 Myr, during which Mediterranean seasonality (yearly summer droughts) became established on the Canaries. Consequently, our results are consistent with palaeoclimatic aridification as a potential driver of woodiness in a considerable proportion of the insular woody Canary Island lineages. However, the observed pattern between insular woodiness and palaeodrought during the last couple of million years could potentially have emerged as a result of the typically young age of the native insular flora, characterized by a high turnover

    Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms

    Get PDF
    Rate variation in genes from all three genomes has been observed frequently in plant lineages with a parasitic and mycoheterotrophic mode of life. While the loss of photosynthetic ability leads to a relaxation of evolutionary constraints in genes involved in the photosynthetic apparatus, it remains to be determined how prevalent increased substitution rates are in nuclear DNA of non-photosynthetic angiosperms. In this study we infer rates of molecular evolution of 18S rDNA of all parasitic and mycoheterotorphic plant families (except Lauraceae and Polygalaceae) using relative rate tests. In several holoparasitic and mycoheterotrophic plant lineages extremely high substitution rates are observed compared to other photosynthetic angiosperms. The position and frequency of these substitutions have been identified to understand the mutation dynamics of 18S rRNA in achlorophyllous plants. Despite the presence of significantly elevated substitution rates, very few mutations occur in major functional and structural regions of the small ribosomal molecule, providing evidence that the efficiency of the translational apparatus in non-photosynthetic plants has not been affected
    corecore