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Abstract: Fungi have crucial roles in ecosystems, and are important associates for many organisms. They are
adapted to a wide variety of habitats, however their global distribution and diversity remains poorly docu-
mented. The exponential growth of DNA barcode information retrieved from the environment is assisting
considerably the traditional ways for unraveling fungal diversity and detection. The raw DNA data in asso-
ciation to environmental descriptors of metabarcoding studies are made available in public sequence read
archives.While this is potentially a valuable source of information for the investigation of Fungi across diverse
environmental conditions, the annotation used to describe environment is heterogenous. Moreover, a uniform
processing pipeline still needs to be applied to the available raw DNA data. Hence, a comprehensive frame-
work to analyses these data in a large context is still lacking. We introduce the MycoDiversity DataBase, a
database which includes public fungal metabarcoding data of environmental samples for the study of
biodiversity patterns of Fungi. The framework we propose will contribute to our understanding of fungal
biodiversity and aims to become a valuable source for large-scale analyses of patterns in space and time, in
addition to assisting evolutionary and ecological research on Fungi.
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1 Introduction

The kingdomFungi is amajor group of organisms. Fungi play essential roles in ecosystems and their ecological
importance is widely studied. They are involved in the decomposition of organic carbon and contribute to the
transformation of phosphorus and nitrogen compounds into crucial resources for the life of other organisms
[1−3]. Fungi are found living under an extremely wide variety of environmental conditions and they have
evolved diverse feeding strategies; symbiotic (i. e., intimate interactions between living partners, such as
bacteria [4], plants [5, 6] and animals [7, 8]), parasitic [9] and saprotrophic (whereby fungi decompose dead
organic material) [10].
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There are currently between 120,000 and 144,000 species [11, 12] of fungi described, but it has been
estimated that the actual diversity of the group includes millions of species [13]. Yet, due to the complexity of
their morphological structures, their dependencies on other organisms, and their cryptic lifestyles, much of
their global distribution and diversity remains to be documented. Furthermore, the environmental factors
controlling the spatial patterns of fungi are still poorly understood. Only with the advent of DNA-based
molecular techniques, have researchers been able to look closely at the ecological forces that structure fungal
communities. In particular, nowadays researchers make use of metabarcoding, a technique which combines
high-throughput DNA sequencing methods (HTS) with a common barcode gene to identify all species present
in environmental samples.

This approach has revealed new fungal species at a high rate [14, 15] and provides critical new insights to
assessments on fungal diversity and the distribution patterns of fungal communities. For example, numerous
metabarcoding studies on fungal diversity have been based entirely on DNA extracted from soil, a habitat of
high fungal diversity [16, 17]. Raw DNA sequencing data from individual studies, in addition to descriptive
information of the collected samples, host environments, and locations are now stored in accessible sequence
read archives, for example in the National Center for Biotechnology Information (NCBI) Sequence Read
Archive (SRA) [18]. These archives are therefore potential powerful sources of information for extending our
knowledge of fungal distributions across multiple geographic and ecological scales. However, the metadata
associated to samples is heterogeneous and information of interest is not directly accessible from the rawDNA
data, hence data from individual studies are not directly comparable. These obstacles prevent large scale
assessments for fungal biodiversity and distribution based on DNA data retrieved from public repositories.
Therefore, here we introduce the MycoDiversity DataBase (MDDB), a curated repository of public integrated
environmental samples for assisting the studies on fungal biodiversity.

In the MDDB, processed data from SRA is stored and integrated such that fungal DNA sequences are
directly retrievable from a study source. MDDB facilitates navigation from individual environmental sample
to a larger scale by linking the spatial components of the origins of the samples. Even though Fungi are
ubiquitous in all ecosystems [19], their abundance and community structure vary across biomes and are
influenced by the abiotic and biotic characteristics of their habitats. With the MDDB, a set of fungal se-
quences observed in refined environmental criterias can be obtained, for example fungal communities
detected in very acidic soils, and researchers can explore how communities differ along particular habitat
gradients. The MDDB incorporates information retrieved from public resources, including literature, SRAs
and taxonomic sources used for identifying sequencing data. The integration of these data is implemented
by applying three methodologies. The first one is the extensive curation applied to the annotations retrieved
from the data repositories. The second is the generation of mappings for the association of data retrieved
from the different data repositories. The last is the application of a uniformprocessingmethod adapted to the
raw DNA data retrieved from the sequence archives. This latter method allows the incorporation of envi-
ronmental traits obtained from samples and fungal DNA sequences, and thus enables to integrate data from
different studies. With the inclusion of metabarcoding studies, MDDB allows to investigate the relationships
of Fungi within their ecosystems, in addition to explorewhich are the environmental factors controlling their
spatial patterns.

Our database has the objective of becoming a supportive tool for researchers to gain a better insight of the
actual biodiversity of these organisms, and in addition, to facilitate the identification of the ecological
fundamental features driving fungal distribution patterns over large geographic scales.

2 Background information

2.1 Fungal diversity

Traditionally, mycologists have been describing and classifying organisms belonging to this eukaryotic group
by using morphological traits, mostly of sporocarps, the macroscopic reproductive structures present in some
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lineages of Fungi. This classical approach has severe limitations. For instance, many species belonging to
arbuscular mycorrhizal fungi do not form visible fruiting structures [20], seasons also have an impact on
sporocarp production [21] and the identification of certain groups may be restricted during their non-fruiting
stages [22]. However, the recent adoption and dissemination of DNA-basedmolecular tools has greatly reduced
the barriers to sampling and identifying fungi from fungal hyphae. The sequencing methods not only refined
taxonomic relationships hypotheses which were based onmorphological evidence, but also assisted the rapid
identification of novel taxa [23].

The DNA barcoding technique is now a widespread sequencing approach used to identify species [23, 24],
raising the actual diversity of the group to a predicted 5.1 million of species of fungi [25]. The highly variable
nuclear ribosomal internal transcribed spacer (ITS) region is proposed as the primary fungal DNA ‘barcode’
marker for species identification [26]. HTS technologies has transformed our perspective on fungal
distribution by enabling the detection of organisms directly from their host environments. Barcode sequences
detected in environmental samples can be simultaneously and rapidly sequenced by using a variety of HTS
platforms [27–29].

2.2 HTS technologies on fungal diversity

In this past decade, there has been an increasing number of environmental studies on fungal communities
which relied on data obtained from HTS platforms. Fungal diversity in ecosystems have been studied over
different geographical scales, such as on small-scale [30−35] and on global-scale [36–38]. Other studies
focused on environmental aspects [39–41] or on the investigations of fungal-host relationships [42–45] and for
observing effects of climatological gradients on biodiversity [46].

Such investigations should be carried out by applying the following criterias: the same sampling protocol
for the collected samples, the equivalent HTS platform used for sequencing DNA barcode data and a uniform
method for processing the raw HTS data.

2.3 Repositories for HTS data

The SRAs of the International Nucleotide Sequence Database Collaboration (INSDC) [47] are the European
Bioinformatics Institute (EMBL-EBI) European Nucleotide Archive (ENA) [48], the NCBI SRA and the DNA
DataBank of Japan Sequence Read Archive (DRA) [49]. These archives have been developed for providing the
huge amount of data generated from HTS technologies in form of files containing sequence reads. As of end of
April 2019, SRA containedmore than 10 petabasepairs (10ˆ16 basepairs) of open-access HTS data [50] linked to
almost 200,000 published studies, in which over 4000 SRA records belong to environmental metabarcoding
studies.

2.4 Processing HTS material for fungal detection

The raw sequencing data generated from HTS has its computational challenges for obtaining the fungal
composition within an environmental sample. In order to provide species-level data for community analysis
and ecological studies, the amplicon reads generated by HTS technologies need to be categorized in distinct
units, which are a proxy for fungal species. Numerous bioinformatics algorithms [51–57] have been developed
to cluster the raw reads based on their sequence similarity into representatives of roughly species-level,
commonly referred to Operational Taxonomic Units (OTUs). The amplicon reads contain errors which are
generated during the sequencing [27, 58–61]. A qualityfiltering step [62–64] can be applied to remove the errors
from amplicon reads before the clustering procedure into OTUs.
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2.5 Sequence based taxonomic identification

The taxonomic annotation of OTUs relies on sequence similarity searches in reference databases. For sequence
similarity searches, BLAST [65] is the most common tool. In the context of the fungal kingdom, UNITE [66] is
considered as the main reference ITS database for the identification of fungi [67]. UNITE groups the ITS
sequences from specimen/culture vouchers collected at several sequence similarity thresholds to obtain
species-level OTUs referred as species hypotheses. All SHs (458,797 as of August 2018) [68] have a unique
digital object identifier (DOI) which provides a standardized documentation of which taxa were found, and
promotes unambiguous reference communication across studies [15].

2.6 Integration of published sequence data

Many studies rely on the use of HTS techniques for fungal assessment, but due to the different HTS platforms
and the heterogeneity of the HTS data generated, the curation of these data is laborious and an uniform
strategy needs to be applied. Consequently, there are very few integrated studies based on public repository
data. In addition, due to the enormous species diversity of this group of organisms,many studies only focus on
particular fungal groups for large-scale assessments [69].

Large-scale biogeographic signals based on HTS data are still scarce. This is mostly due to the lack of
standardized approaches for extrapolating the HTS raw data. Even if guidelines do exist [14, 70], different
researches apply yet different methods for denoising HTS data and decisions on OTU assignments. Not only
this may affect the diversity estimate, but the direct comparison of OTUs among studies is restricted. Meiser
et al., [71] were the first to exhibit a comparative metabarcoding analyses of public metabarcoding studies.
Even though their approach considered only three studies deposited in SRA, the uniform denoising method
applied on HTS public data, retrieved from SRA, allowed the integration of studies such to compare fungal
communities on the basis of ITS sequences.

2.7 Databases on fungal sequence data

There have been previous attempts in building DNA-based databases taking into account fungal DNA data and
associate it to information on their environment. For example, in 2010, theMaarjAMdatabasewas released [72], a
repository of reference sequences belonging to the mycorrhizal fungi Glomeromycota. The database associates
information about geography, habitat and climate to Glomeromycota barcode sequences. These barcodes are
clustered in ‘Virtual Taxa’, a proxy for fungal species. However, the data deposited inMaarjAM does not include
SRA data and it is only limited to published processed sequence data assigned to Glomeromycota obtained in
GENBANK [73]. Several studies describing Glomeromycota have included their data in SRA (e. g., SRA study
accession numbers: SRP066844, SRP087758, SRP075244, SRP067281, SRP070752). These studies reveal
relationships between environmental gradients and Glomeromycota richness covering many ecosystems.
MaarjAM’s environmentalmetadata ismaintainedby a groupof specialistswho extrapolate the information from
literature so that provide high quality annotation. The incorporation of new publications and sequences in the
database has decreased in the past years (two publications in the years 2018–2019). This is due to the non-
automated approach of curating records and the clustering method applied which has been criticized [74].

3 Materials and methods

3.1 Data acquisition

The MDDB aims to provide a quality-controlled repository of public metabarcoding studies related to fungal diversity. The pub-
lications containing the raw HTS data submitted to sequence archives, were used for inclusion in MDDB. The workflow of the data
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acquisition methodology is summarized in Figure 1. Rather than selecting data directly from public studies, our approach was to
investigate whether data could be retrievable from publications which describe studies. For the development of MDDB, our starting
point was the selection of 25 publications (Appendix A) related to fungal metabarcoding studies thus by using the keywords ‘ITS’,
‘fungi’ and ‘metabarcoding’. This selection all included DOIs and were all associated to HTS data.

The subsequent step involved the PubMed [75] mappings to the DOI list. We have used the NCBI standard identifier converter
API [76] for retrieving the list of Pubmed identifiers of the publications. The list of Pubmed identifierswas used to obtain the PubMed
records in a XML format bymeans of a Biopythonwrapper (v.1.73) [77] on theNCBI Direct Entrez E-utilities package [78]. The records
in PubMed contain formalized annotations including the abstract, authors and affiliations, and crossed-reference identifiers to
other repositories. An XML parser in Python (v.2.7.15) was used to retrieve the elements and store them in a Python structure
DataFrame. As from 2014, the sequence read archives of INSDC and the NCBI BioSample and BioProject databases [79] are included
in the DataBankList PubMed element [80]. This element corresponds to a data source for which the accession number list of
sequence data can be provided. The name of the reference repositories and their values are retrieved automatically and give rise to
the PMID – SRAs mapping. For the PubMed records that do not contain this element, the complete Publication-Study mapping is
achievable by retrieving the sequence read accession numbers from the publication. Our method is based on searching for regular
expressions in PDF files of publications. To that end, we have defined the set of relevant regular expressions. We use PyPDF2 [81]
(v.1.26.0), a PDF Python parser to find the matches to such regular expressions. The possible matches are contained in a list of
sequence archive prefixes which belong to SRA, ENA and BioProject. When a match is detected, the full string is retrieved. Table 1
illustrates the list of regular expressions to search in the text of the PDF of the publications. Using this strategy, from 25 publications
(88%), we detected 22 accession numbers (Appendix A, Article Attribute). From this selection, two articles contain GENBANK
identifiers which provide processed HTS data. These were not considered as they were not part of the set of regular expressions of
interest and are beyond the scope of the database. Our method could not detect sequence read accession identifiers which were
located in tables of the PDF files. This was the case of [71], for which a manual retrieval was applied. For the publications which
reference BioProject accession numbers, the Entrez E-utilities allowed to retrieve the associated SRA study accession numbers
(SRP).

Themajority of the articles we have selected contained SRA as the source of sequence data (Appendix A, Study Attribute), thus
this became our primary repository mapping for the related literature and SRA.

Figure 1: Data acquisition workflow for retrieving data from Pubmed and SRA repositories. Once the data is retrieved, the final
step of the data acquisition involves the curation of the two data types, the metadata retrieved from PubMed and SRA (Metadata
Curation), and of the raw HTS data of the SRA fastq files (Sequencing Data Curation).
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The SRA submission object domain, known simply as SRA contains 4 name space mappings, the study of research (SRP), the
experiment used for sequencing (SRX), the sample of origin (SRS) and the files generated by theHTS technologies, the sequence run
(SRR). In order to automatically retrieve all the object identifiers linked to an SRA object, we have used the SRAUtils (https://
bootstrappers.umassmed.edu/guides/main/), a bootstrapper for SRA Run Info CGI [82]. The metadata linked to SRP, SRX and SRS
objects have been retrieved with E-search and E-fetch of the NCBI Direct E-utilities. As for the SRR objects, the raw sequence data
(provided in standard flow gram format files) generated by HTS platforms, are retrieved and converted in Sanger FASTQ format by
using the prefetch and fastq-dump (v.2.9.0) of the NCBI SRA Toolkit [83]. By providing in input the DOI of a publication, the data
acquisition pipeline (https://github.com/naturalis/mycodiversity/tree/master/ncbi_data_acquisition) retrieves metadata associ-
ated to the SRA submission of a metabarcoding study including data linked to the NCBI BioProject and BioSample databases. The
pipeline was conducted over the DOIs of the publications listed in Appendix A by using an Intel(R) Core(TM) i7-4770HQ Processor,
CPU @ 2.20 GHz, 16 GB mac OS v.10.13.6 17G65 machine. As an indication, running the pipeline on one single publication which
contains the PMID cross reference to SRA [44], takes 00:03:35 min for retrieving data. The data retrieved includes metadata
belonging to the SRA submission mappings, 166 BioSamples, 166 experiments, mappings to the sequence run files (SRRs) and to
Literature. The five files (393 KB) are all saved in a CSV format. We have compiled all the libraries in the GitHub repository (https://
github.com/naturalis/mycodiversity/blob/master/ncbi_data_acquisition/requirements.txt).

3.2 Data curation

3.2.1 Metadata curation and enrichment: The annotations retrieved from the resources were stored in Python DataFrames for
which we have assigned categories. The ‘Literature’ category stores annotations acquired from the PubMed source, ‘Study’ con-
tained description of the experiment conducted, the sample source, and the purpose of the research study. In ‘Sequence’, we have
stored the run read files fetched from SRR objects.

When metadata associated to studies use standardized vocabularies, the study integration improves and the interpretation
across studies is possible. Significant guidelines [84–86], are providing extensive emphasize on the application of formats,
metadata standards and ontology based vocabularies for leading to knowledge integration and data reusability. Researchers who
share data are aware of the importance of following standard procedures [85–89] but assigning controlled term vocabularies to the
data submitted is still lacking [90]. Though SRA to be submitted requires recommended formats and standards for metadata fields,
we have seen inconsistency in the format and quality in the selected studies. Because of this data heterogeneity, we have extended
the annotation by the use of standard formats and terms for allowing the increase of study comparisons. The date values contained
in ‘Literature’ and ‘Study’ categories have been converted to a standard format following the International Organization for
Standardization protocol. The motivation of Bernstein et al., [91] to develop MetaSRA, relied on the lack of opportunity to perform
large-scale analyses due to the diversity of samples in SRA and the poor structure of the metadata associated with each sample.
Though their work has focused on human samples and mapping annotations to terms in biomedical ontologies, their resource
shows the great impact on the use of controlled vocabularies and ontologies for the investigations across diverse conditions present
in SRA metadata. For our research, it is important to curate the information related to the collected site in order to perform large-
scale analyses.Wehave observed that although controlled vocabularies are supported for the annotation of geographic location site
of a sample, and it is highly recommended to provide names from the INSDC dictionary [79], yet the free text insertion is still
permitted. We have used Geocoder [92] (v.1.38.1.), a geocoding Python library used for mapping the country terms to standard
GeoNames [93] identifiers. The GeoNames API (http://www.geonames.org/export/web-services.html) allowed us to retrieve parent
names of the list of GeoNames countries, and these were used to assign a new term ʻcontinentʼ that was linked to the country name.
Knowledge of the exact position on the globe where a sample is been collected is a powerful approach to fungal distribution
investigation. Many studies deposited in SRA archives provide the geographical coordinates of the sample site collected; however

Table : Regular expressions used for the detection of the sequence archive prefixes in the text of publications. For each regular
expression, we provide the total number of publications for which a match is detected.

Regular
Expression

INSDC
DB

Number of
Publications

SRA SRA 

SRP SRA 

SRS SRA 

SRX SRA 

PRJNA BioProject 

PRJEB BioProject 

ERP ENA 

ERS ENA 

6 I. Martorelli et al.: Fungal metabarcoding data integration framework

https://bootstrappers.umassmed.edu/guides/main/
https://bootstrappers.umassmed.edu/guides/main/
https://github.com/naturalis/mycodiversity/tree/master/ncbi_data_acquisition
https://github.com/naturalis/mycodiversity/blob/master/ncbi_data_acquisition/requirements.txt
https://github.com/naturalis/mycodiversity/blob/master/ncbi_data_acquisition/requirements.txt
http://www.geonames.org/export/web-services.html


these are in different formats (e. g., degrees or decimal). For allowing the integration of studies by using the coordinate locationfield
in SRA, we have converted all coordinate values to decimal format and split this field into two distinct attributes: latitude and
longitude. For including samples that do not provide coordinate values, we have used their GeoNames country identifiers for
retrieving the country centroids values and assigned them to the country terms. TheGoogleMaps javascript API (https://developers.
google.com/maps/documentation/javascript/reference/) assisted in the correction of coordinate values that did not correspond to
the exact spatial location displayed on a world map. This method checks and replaces the incorrect coordinate values with the
GeoNames coordinate values provided in GeoNames.

Descriptions of the habitat where the sample has been collected are important for inferring their contributions on a spatial
scale diversity. The environmental context, known as biome is one of the most important feature for describing the ecosystem of a
sample. It is recommended to assign Environment Ontology (ENVO) [94] terms to the attributes describing the environment. We
have used the EXTRACT 2.0 tool [95] for the recognition of the term provided in the SRS metadata and for the retrieval of the
corresponding ENVO identifiers. All original samplemetadata values are kept as linked reference to data provenance and the values
which are curated are used as extended annotation.

3.2.2 HTS data curation and annotation: Because of the heterogeneity and diversity of available pipelines, we have developed a
stand-alone pipeline for the generation of OTUswhich encounters the diversity of the amplicon data generated by the different HTS
platforms. The Processing for Fungal ITS Sequences pipeline (PROFUNGIS) (https://github.com/naturalis/mycodiversity/tree/
master/PROFUNGIS) is a pipeline developed for downloading SRA reads (SRR) and for the generation of Zero-radius OTUs (ZOTUs).
For historical and technical reasons, OTUs are typically constructed using a clustering threshold similarity of 97% [96], while for
ZOTUs, a 100% identity threshold is applied [97]. According to [98], ZOTUs have the advantage of being directly comparable
between datasets without the use of reclustering. The application of ZOTUs have shown improvements in reusability and repro-
ducibility, and according to [99, 100], they should replace the 97%OTUs as the standard unit of marker-gene analysis. The pipeline
includes the UNOISE (v.3) algorithm [64], a standard algorithm in the mycological and ecological community for performing error
correction on amplicon reads. The PROFUNGIS pipeline is executable by providing a set of input parameters. The mandatory
arguments include: 1) forward and reverse primers used, 2) the type of ITS subunit marker sequenced 3) the platform and 4) a single
SRR accession or set of SRR accessions of SRA. Following the filtering recommended steps of [101], optional parameters are also
included: the minimal length overlap (minOverlap) for the merging of the Illumina read sets, the estimated error (maxEE), and the
minimal filtering length for trimming. The HTS platforms which PROFUNGIS accepts are Illumina (MiSeq and HiSeq 2000 in-
struments), 454 (GS Junior, GS FLX Titanium and GS FLX + instruments) and Ion Torrent (PGM). In the case of Illumina platform,
PROFUNGIS will include the merging step for creating consensus sequences from the paired-end reads. For the creation of the
ZOTUs set, we have included the 454 GS FLX Titanium platform sequence run files belonging to the SRA Study SRP043706. This
included >3million raw reads (3.11 Gb). For themandatory parameter values,wehave provided the following: 1) forward and reverse
primers retrieved from the design experimental metadata (SRX642180–SRX642691), 2) ITS2 marker as stated in [36], 3) platform
454GS, retrieved from (SRX642180–SRX642691) and 4) accession list containing the sequence run accessionnumbers (SRR1502225–
SRR1502736). The default values were kept for the optional parameters, maxEE = 1.0, minOverlap = 60 bp, and minimal filtering
length= 250 for both ITS1 and ITS2 subregions of ITS. These values are recommendedand are basedon experimental tests during the
development of PROFUNGIS and on previous studies [101], [64]. UNITE FASTA (v.7.2) release (http://doi.org/10.15156/BIO/587475)
was used as a contamination filter and for the taxonomic assignment of the ZOTUs generated from each SRR file. The contamination
filter uses BLAST to query the ITS ZOTUs against the UNITE database. This approach allows to remove putative ZOTUs that are not
similar to known reference ITS sequences as well as to filter ZOTUs which are not associated to fungi, by using a threshold value of
70% similarity. The PROFUNGIS pipeline can run individually, but also sequentially to the data acquisition pipeline. As an
indication, for a subset of 100 SRR accession numbers belonging to the SRP043706 study [36], to be converted into 629,304
(645,8 MB) FASTQ format sequences and processed to 47,529 (12,5 MB) ZOTU FASTA format sequences, PROFUNGIS takes
00:37:33min. PROFUNGIS runs were performed by using an Intel(R) Core(TM) i7-4770HQ Processor, CPU@ 2.20 GHz, 16 GBmac OS
v.10.13.6; and the pipeline can be used on other OS (https://github.com/naturalis/mycodiversity/blob/master/PROFUNGIS/
Dockerfile). We have compiled the libraries in the repository (https://github.com/naturalis/mycodiversity/blob/master/
PROFUNGIS/requirements.txt).

4 Implementation

4.1 Database design and implementation

The MDDB is designed for the integration of metadata belonging to metabarcoding studies to processed
sequence data obtained from the linked HTS data. Curated extended annotations have been linked to the
original annotations for enabling the interoperability among metabarcoding studies which have been
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described in literature. The logical design of the MDDB has followed the recommended procedure of a con-
ceptual scheme from the entity-relationship (ER) model [102]. The data has been organized and is distributed
into the main conceptual components: Study, Sequence, Taxonomy, Literature and Location (Figure 2).

The concepts and information belonging to the components Literature and Study derived from data
obtained from NCBI including PubMed, SRA and the BioProject and BioSample databases. Data belonging to
the component Sequence is affiliated to information obtained from processed HTS data. The Taxonomy and
Location components are reference repositories which further enrich the conceptual scheme by labeling the
sequencing data of the Sequence component and assisting the Study and Literature components in the context
of geography.

The table structure is depicted in the UML diagram of Figure 3. For the entity tables, unique internal keys,
i. e., primary keys, are auto-generated. The provenance mappings of aforementioned literature and of SRA
have enabled a creation of relationships within the database. The values contained in the entities Article,
Journal, Author and Affiliation of the component Literature, originated from the elements automatically
retrieved from PubMed. The ‘Source’ relation contains the mapping of studies as referred in literature and it
connects the components Literature to Study. Study contains data retrieved from SRA and it concerns the
relationships amongst the SRA objects.

Each sample collected for research purposes is provided in SRAwith an SRS accession and it belongs to an
individual study,while a studymay include several samples (cf. Study.includes in Figure 3).We have observed
that SRA studies may not provide sample objects, but HTS data needs to be obtained by a material (i. e., soil).
Therefore, as an MDDB constraint, Sample is always defined. The relation ‘Experiment’ thus provides the
experimental procedure conducted to a given sample and is the source for connecting the sample composition
(i. e., soil) to raw data sequenced produced by an experimental strategy. We store the provenance of the run
sequence files because different approaches for processing raw sequences influence the diversity estimates
[71]. The PROFUNGIS pipeline has been developed for extracting biological significant sequence information
from the SRA SRR files in a uniform manner. The ‘Process’ relation (cf. Sequence.Process in Figure 3) then
stores the pipeline parameter values used for the generation of the ZOTUs. The ‘ReferenceSequence’ entity of

Figure 2: Components and Dependencies of the fungal metabarcoding data integration.
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the Sequence component provides the unique ZOTU representatives incorporated from the processed SRR files
generated in experiments. This entity also includes annotation of the barcode markers, i. e., ITS1 and ITS2
subunits, and a sequence length. Post-processing methods, such as clustering and phylogenetic re-
constructions, can be applied to this set. The ‘contains’ mapping (cf. Sequence.contains in Figure 3) is a

Figure 3: UML data model of the MDDB.
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derived relationship and it guarantees the inclusion of the ZOTU reference sequences to the original sample
collected and to the data provenance. This relation integrates ZOTUs into the collections of samples provided in
MDDB and it is a prompt source for observing the number of shared ZOTUs among environmental conditions
and to compare ZOTUs between samples. In addition, the set of ZOTU sequences of ‘ReferenceSequence’ have
been blasted against the UNITE reference database (cf. Taxonomy.AssignTaxa in Figure 3) and the mapping
provides the blast taxonomic name hit as well as the blast similarity value hit. For the Location component, the
location information observed in the Study and Literature components have been related to the geographical
territory names and positions by mapping to the referenced country from GeoNames information.

4.2 Database deployment

4.2.1 MonetDB

The MonetDB database-management system (DBMS) [103, 104] is an open source column-oriented client-server
DBMSwhich has been particularly designed as a scalable system to be able to dealwith large data volumes [105].
To that end MonetDB shows to be extremely useful for data mining applications in astronomy [106], online
analytical processing applications [107], geographic information systems [108, 109] and sequence alignment
processing [110]. In this latter case, the choice of MonetDB relied on previous performance tests on genome
sequences [110], on response time of queries of spatio-temporal datasets [111] and on multi query optimization
tests on large-scale information retrieval [106]. MonetDB delivers high performance when operating on complex
and extensive queries [112] containing large amount of data entries. In addition, for our typical data we have
compared the performance of SQL databases with MonetDB. Our experiments compare three DBMSs with one
and the same set of test queries on the same database and on the same hardware platform. Importing the
database in the different DBMSs resulted in a different size for each DBMS. These values are shown in Table 2;
MonetDB uses compression [113] and therefore it is considerably smaller compared to the other two. Moreover,
the results in term of execution time of all the three queries unequivocally shows that the best performance is
accomplished with the MonetDB DBMS. Queries (Appendix B) were conducted on an Intel(R) Xeon(R) Processor
X5355@2.66GHz, 32GBmemory,UbuntuOSv.16.04.4LTS server. For all experiments, query testswerebasedon
MonetDB version 11.27.13, MySQL version 5.7.21 and SQLite version 3.11.0.

4.2.2 Table filling

The values of the tables of the database schema were transposed to table templates by using the SQL-Python
module (v.1.2.5.). Subsequently, the populated tables are put in MonetDB using the MonetDB MAPI library
(v.1.4.0). Currently version 11.27.13 of MonetDB is used.

Table : The results corresponding to theQuery Tests conducted on different DBMSs.We have performed five runs for each query
and taken the mean and standard deviation (SD) value. The results are displayed in seconds (unit).

Query tests conducted on different DBMS

SQLite MySQL MonetDB
DBMS size (MB)   

Query
Q: Mean . . .
Q: SD . . .

Q: Mean . . .
Q: SD . . .

Q: Mean . . .
Q: SD . . .
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4.3 Database management: PROFUNGIS post-processing method

The PROFUNGIS pipeline generates a unique set of ZOTU representatives for every individual run file (SRR) of
each sample (SRS). In order to incorporate ZOTUs amongst samples and thus updating MDDB with new
samples, an automatic approach has been developed (https://github.com/naturalis/mycodiversity/tree/
master/PROFUNGIS_post_processing). A ZOTU of a sample will be included in the database if it has not been
detected yet in previous samples, and a new record in MDDB will be created to include the sequence. In
sequential fashion, the ʻcontainsʼ relation is updated so that themapping of the newZOTU representative to the
original sample is incorporated in the database. Contrarily, if there is amatch of the ZOTU to an existing record,
it will be excluded from the ZOTU representative list and only the ‘contains’ relationship will be updated, such
tomap the ZOTU to the new sample. PROFUNGIS post processing pipeline execution depends on the size of the
ZOTU Reference table. In Table 3 we present an indication of performance times of our PROFUNGIS post
processing method. For each update step, we consider the incorporation to the reference dataset with 100
processed files (FASTA format) containing ZOTUs generated by PROFUNGIS. Each FASTA file contains an
average range of 400–500 ZOTU sequences. For update 1, the upload included the insertion of 47,529 ZOTUs in
an initial empty ZOTU reference set. This generated the set of 35,981 ZOTU representativeswhichwere stored in
the distinct RefSequence set. The number of ZOTUs after the update decreased due to detection of identical
sequences, that is, common ZOTUs. The contains set takes into account this aspect thus keeping track of which
ZOTUs are shared among the samples of origin. The succeeding updates follow, for which another set of 100
FASTA files are introduced in the system every time. The sequential updates are shown in Table 3; the
execution time (HH:MM:SS unit) for the method to detect existing ZOTUs in MDDB increases as the RefSe-
quence table grows. All update tests were performed on an 8 × 2.7 GHz Intel Xeon 5150 Processor, 16 GB,
running Debian 7 cluster node.

5 Results

Currently MDDB contains literature metadata obtained from 25 articles published in 2010–2017 (Table 4). The
articles that provide SRA submissions, contain over 37 Gb of raw sequence data from which we have currently
processed 2.67 Gb for the incorporation of ZOTUs in the RefSequence table. The processed data generated over

Table : Post processing update steps for the incorporation of additional FASTA files containing processed ZOTU sequence. Each
update includes  FASTA files (average  ZOTUs/file) obtained from  distinct samples of a study. The size displayed are
for csv format of the Reference ZOTU and Contain datasets while the execution time is displayed in HH:MM:SS format.

Post processing PROFUNGIS

Run Input Output Execution
Time

ZOTUs in FASTA
Files

ZOTUs in
Reference

Records in
contains

ZOTUs in
Reference

Records in
contains

Update   empty empty   ::
, MB . MB , MB

Update       ::
, MB . MB , MB , MB  MB

Update       ::
, MB , MB  MB , MB  MB

Update       ::
, MB , MB  MB , MB , MB

Update       ::
. MB , MB , MB , MB , MB
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100,000 ZOTU representatives as Fungi, covering 512 samples collected in 38 countries worldwide. PRO-
FUNGIS does rely on the input of fourmandatory parameters. Two of these parameters (the SRR accessions and
the SRAExperiments (SRX) attribute Platformused in the experiment setup) are provideddirectly from the data
acquisition pipeline, while the primers can be provided in the SRX Design description.

Also the marker sequenced is never found in the experimental metadata. Therefore, we have currently
processed the SRR files linked to SRX records that do provide the set of primers usedwithin the SRXDesign. For
obtaining the rest of set of primers necessary to process sequence data obtained from other studies, we rely on
searching for this information in the PDFs of the publications. For this approach, we have created a reference
primer dataset which contain the primer names, the primer sequences, name of marker and aliases for the
primer names. This primer reference table contains the list of universal primers used for ITS amplicons [114]
and can be further extendedwith the primers described inmost recent publications. These reference termswill
define the set of the relevant regular expressions to search. APDF-parser such as PDFMiner [115] or PyPDF2 [81],
will allow to detect the matches of the defined regular expressions in the publications. This idea will be
incorporated in the MDDB platform. Set of queries have been designed to retrieve datasets of interest. In this
section we present examples of the type of data we can retrieve regarding fungal biodiversity and distribution.

5.1 Fungal biodiversity data

The hierarchical implementation of GeoNames applied to the location fields of the samples made the incor-
poration of countries to a large scale (i. e., continent) possible. As an illustration (Table 5), the diversity ofmajor
fungal groups in each major global region is retrievable.

Table : Type and amount of data contained in MDDB.

Data type Total

Articles 

SRA submissions 

SRA Studies (SRP) 

 GS 

Illumina 

Ion Torrent 

SRA Experiments (SRX) 

SRA Run Files (SRR)  (. Gb)
SRR processed  (. Gb)
Raw sequences processed 

ZOTUs generated 

ZOTUs assigned to Fungi 

SRA Samples (SRS) 

SRA SRS curated 

Table : Amount of ZOTUs assigned for each Phylum in every continental region.

Phylum Africa Asia Europe North America Oceania South America

Basidiomycota      

Ascomycota      

Mortierellomycota      

Unidentified      

Mucoromycota      

Chytridiomycota      

Rozellomycota      

Glomeromycota      

Other      

12 I. Martorelli et al.: Fungal metabarcoding data integration framework



The taxonomic classification provided in MDDB allows to group all ZOTU representatives in each high
taxonomic rank (phylum). As a result, for each continent, Basidiomycota turned out to have the most ZOTU
representatives (Figure 4), with the exception of Oceania and South America, were Ascomycota where more
abundant in terms of diversity.

5.2 Fungal distribution data

The taxonomic hierarchy and the curated coordinate values of samples deposited in MDDB allow to display
diversity patterns and distribution of specific taxonomic group of fungi. As an example, in Figure 5 we
illustrate the distribution of the Russulaceae family within the spatial range among the tropic of Cancer and
tropic of Capricorn. Themap also displays the diversity of the family based on the distinct ZOTUoccurrences for
each plot. Queries can be further extended for obtaining set of ZOTU sequences observed in samples and
display taxonomic distributions in refined environmental criterias, for example by comparing species richness
among biomes.

Figure 4: Major phylum ZOTU representatives for each continent.

Figure 5: Diversity of ZOTUs belonging to the Russulaceae family and their distribution display in a spatial range. Map display by
using Marker GeoCharts (http://developers.google.com/chart/interactive/docs/gallery/geochart).

I. Martorelli et al.: Fungal metabarcoding data integration framework 13

http://developers.google.com/chart/interactive/docs/gallery/geochart


5.3 Shared ZOTUs among continents

The adaptation of a uniform pipeline to process HTS data, has allowed the incorporation of ZOTUs among
samples. MDDB permits not only to observe fungal composition within a sample, but also allows to observe
which global regions and environmental conditions have the most similar fungal community composition as
revealed by the shared fungal sequences observed in the different locations. Table 6 shows the type of data
associated with each continent and the number of ZOTUs in the current version of MDDB. The data is currently
biased becausemost of the samples included inMDDB are fromAsia, Europe and Oceania. WithMDDB, we are
able to retrieve the amount of ZOTUs for a given location and compare it with the rest of the globe. Europe and
Asia share a comparatively high number of shared ZOTUs between the rest of the globe.

Meiser et al., [71], presented the amount of sharedOTUs among studies andwith a similar approach,MDDB
provides the possibility to display the fungal similarities and comparisons among locations and compare a
specific region composition with the rest of the globe. The pie-charts in Figure 6, illustrate the geographical
distribution of the ZOTUs that occur onmore than one continent. The number of samples and number of ZOTUs
included in the continents Oceania and Asia are more similar to each other compared to the other continents,
while the number of shared ZOTUs amongAsia and Europe is considerably high compared to the shared ZOTUs
between Europe and Oceania. Appendix C shows the queries constructed to generate the output results
displayed in this section.

Table : ZOTUs representatives for each continent and common ZOTUs among continents.

Amount Globe Africa Asia Europe North
America

Oceania South
America

Number of countries       

Number of samples       

Number of ZOTUs       

Number of ZOTUs shared betweeen continents      

Figure 6: Overlap of ZOTUs among continents.
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6 Discussion

The FAIR principles [86] have been leading in the design, implementation and deployment of the MDDB. An
important result of our framework, we provide reliable high quality data in a feasible manner so as to facilitate the
community for fungal biodiversity discovery. Additionally, MDDB allows investigating the environmental contri-
butions to fungal distribution and biodiversity. The consistent structure of MDDB assuresmaintaining the integrity
of data pertaining publicly available metabarcoding studies. For our implementation, the FAIR principles for data
enrichment with standard terms and methods as well as controlled vocabularies and ontologies are applied. This
assures good data integration and data longevity. It is a crucial factor in the further development of MDDB.

6.1 Data feasibility and accessibility

Accessing data that is stored across different public sources in a feasible manner is one of the keys for leading to
knowledge discoveries. The tools Entrez direct E-utilities, NCBI Run browser and Run selector [116] permit data
selection and data retrieval associatedwith SRA. However, these utilities are only efficient when the Entrez Unique
Identifiers are provided in constructing the search (for example, with using SRA study accession numbers), but the
selection becomes challenging when text search is applied. Furthermore, the raw sequence data associated to SRA
records is only achievable when SRR accessions numbers are used in combination with the SRA Toolkit. The
packages SRAdb [117] and SRAmongo [118] facilitate the access and data retrieval from the SRAdatabase. They also
tend to aggregate data from the NCBI interlinked databases (e. g., SRA and PubMed), however data from the
publication is retrievable if only the databases cross-reference is interoperable. Regarding interoperability of the
NCBI resources (Appendix A, PMID and SRA Cross Reference attributes) there are inconsistencies. For example, by
using the NCBI Run selector, the PMID of the associated article was not found in the namespace of Tedersoo’s SRA
study [36]. With our data acquisition method (Section 3.1), the SRA study is directly retrievable by using the DOI of
the publication. To the best of our knowledge, MDDB is the first to provide the complete mapping of NCBI
publications to SRA based on a selected list. The complete mapping has been achieved by retrieving the study
identifiers from the PDFs of the publications for which this information is not contained in the associated PubMed.
This relationship facilitates the selection of studies and experimental assays by using literature text terms (e. g.,
article title and keywords within an abstract). Additionally, it allows the direct access of publications describing
mycodiversity to its sequencing data (e. g., a list of fungal species detected can be retrieved by a publication title).

6.2 Data integration and interoperability

The integration of environmental samples for the exploration of global fungal diversity and distribution can be
achieved if metadata retrieved from public domains is formalized, curated and standardized. At the same time
uniform methods must be applied to the raw HTS data. Data associated with studies is increasingly made
available in public data repositories [119, 120] making this a valuable source for our domain. However, while
doing our research, we have observed the lack of standard terms and controlled vocabularies used to describe
biological samples in SRA. We showed the potential of mapping location annotations to Geonames terms,
ENVO terms to the habitat annotation and apply standardization to the coordinate values (Section 3.2.1). This
data enrichment offers the opportunity to increase relationships between geographical regions and fungal
communities across diverse environmental conditions, thereby increasing the interoperability among studies.

We believe that extending the application of semantic mappings to submitted data will reduce hetero-
geneity and increase integration of studies. We want to further enrich MDDB with ENVO vegetation and
materials terms (i. e., soil) and assign CheBI [121] terms to the nutrient components, such as carbon and
nitrogen and to conditions, for instance to the hydrogen values used for the acidity of the soil. Furthermore, we
will apply theUnits Ontology [122] to control the formats of units in association tomeasurements, such as to the
concentration and amount of compounds found in the environmental material and to the soil depth and
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amount of sample collected. Moreover, we will include the application of the ENVO ontological classification
for extending the integration of studies by using biomes terms.

Finally, we emphasize the application of text mining tools for the analysis of publications, such as the use
of EXTRACT to retrieve possible termswithin the text. Usually in a publication there is an extensive description
of the habitat. Natural language processing methods will allow the retrieval the NCBITaxon terms (i. e., plant
species names) constituting the associate host organisms from which a sample has been collected. The
essential parameters for processing the sequence data (i. e., primers, barcode type) can be obtained by
searching for the relevant regular expressions in the PDF of the publication as proposed here; these valuable
annotations will be included in MDDB in a standard format.

MDDB is the first repository which provides reliable sets of ZOTUs generated by a supportive pipeline for
denoising HTS data from the widely used HTS platforms and which have been deposited in SRA. The choice of
an uniform methodology allows to directly compare the generated ZOTUs and the taxonomic composition
among studies. The low number of shared OTUs among the studies selected byMeiser et al., [71] has suggested
high global fungal diversity and indicates that globally distributed taxamay be rare. Increasing the number of
SRA samples in MDDB, will allow to identify more shared ZOTUs among studies and determine which fungal
communities are highly similar among compared studies.

6.3 Data reusability

MDDB is a reliable system to which its enriched metadata is always associated to the provenance and third-
party annotations by the use of URIs. It is important to emphasize at this stage that datawill bemade accessible
and retrievable by means of a high-end interface and an API. The prototype user interface (https://
mycodiversity.liacs.nl) gives insight of the data contained in MDDB, and is leading to serve as a guide for
comparative studies as well as constructing both local and global scale assessments for fungal discoveries.
Data are reusable and reproducible, as for now by the use of the tools (https://github.com/naturalis/
mycodiversity) and by means of extensions which will be included in the future interfaces.

MDDB will incorporate more SRA studies and consequently include more data. The MonetDB DBMS
guarantees high performance on queries against big datasets and this can auxiliate users to efficiently select
and retrieve data. It is our intention to allow the navigation of public fungal metabarcoding data in a feasible,
straightforwardmanner, such that the userwill not spendunnecessary time in the curation and organization of
data [123] and enhance time for fungal analysis.

7 Final remarks

The rationale of this paper is to illustrate our framework for the curation and integrationof fungalmetabarcoding
datawhich is compiled in theMDDBdatabase.With this dedicated database, wenow can efficiently retrieve data
from collections of fungal metabarcoding studies. The database can be further extended with the latest studies
using all the tools that we have presented for integration and curation. The integration and curation processes
guaranteed uniformity of the data in MDDB, thereby accomplishing an enhancement of availability of public
domain fungal metabarcoding data. The database and the pipelines are now ready for large-scale application.

The further extension of the GUI is complementary to the integration effort. The interface is built from
predefined queries. We start with relatively simple predefined queries and as the interface evolves more
complex queries can be composed. This is part of the future work, some of the ideas are already implemented.
The usability within the community is leading the further development of the user interface.

All considered, this database is ready to support and facilitate large-scale research in fungal biodiversity.

Conflict of interest: Authors state no conflict of interest. All authors have read the journal’s Publication ethics
and publication malpractice statement available at the journal’s website and hereby confirm that they comply
with all its parts applicable to the present scientific work.
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Appendix A

Table A.: Selection of publications describing metabarcoding studies.

Article Year PMID Study SRA Study Title PMID
C.R.

SRA
C.R.

. Fungal biogeography. Global di-
versity and geography of soil fungi.

  SRP Global fungal diversity Y Null

DOI: ./science.
. New primers to amplify the fungal
ITS region–evaluation by -
sequencing of artificial and natural
communities.

  SRP Design and test new primers to be
used to amplify the fungal ITS re-
gion by targeting sites in the .S
encoding gene

Null Null

DOI: ./j.-..
.x
. Strong altitudinal partitioning in
the distributions of ectomycorrhizal
fungi along a short (m) elevation
gradient.

  SRP Root associated fungi Metagenome Y Null

DOI: ./nph.
. Roots and associated fungi drive
long-term carbon sequestration in
boreal forest.

  SRP The Island Project – Fungal com-
munities in boreal forest soils

Null Null

DOI: ./science.
. ITS versus ITS as DNA meta-
barcodes for fungi.

  SRP Analysis of ITS and ITS regions for
barcoding fungal specimens

Null Y

DOI: ./-.
. Dispersal in microbes: fungi in
indoor air are dominated by outdoor
air and show dispersal limitation at
short distances.

  SRP Fungal ITS amplicons from airborne
household dust

Null Null

DOI: ./ismej..
. Quantifying microbial commu-
nities with  pyrosequencing:
does read abundance count?

  SRP Pyrosequencing of Global House
Dust

Null Y

DOI: ./j.-X..
.x
. Indoor fungal composition is
geographically patterned and mor-
ediverse n temperate zones than in
the tropics.

  SRP Pyrosequencing of Global House
Dust

Null Y

DOI: ./pnas.
. Spatio-temporal dynamics of soil
bacterial communities as a function
of Amazon forest phenology.

  GENBANK Null Null Null

DOI: ./s---z
. Phylogenetic relatedness ex-
plains highly interconnected and
nested symbiotic networks of woody
plants and arbuscular mycorrhizal
fungi in a Chinese subtropical for-
est.

  SRP Plant roots in subtropical forest
Metagenome

Y Null

DOI: ./mec.
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Table A.: (continued)

Article Year PMID Study SRA Study Title PMID
C.R.

SRA
C.R.

. Convergence and contrast in the
community structure of Bacteria,
Fungi and Archaea along a tropical
elevation-climate gradient.

  SRP Hawaii Soils Raw sequence reads Null Null

DOI: ./femsec/fix
. FUNGAL SYMBIONTS. Global
assessment of arbuscular mycor-
rhizal fungus diversity reveals very
low endemism.

  ERP Global assessment of arbuscular
mycorrhizal fungus diversity reveals
very low endemism

Null Null

DOI: ./science.aab
. Arbuscular mycorrhizal in-
teractions of mycoheterotrophic
Thismia aremore specialized than in
autotrophic plants.

  SRP Arbuscular mycorrhizal interactions
of mycoheterotrophic Thismia are
more specialized than autotrophic
plants

Null Null

DOI: ./nph.
. A phosphorus threshold for
mycoheterotrophic plants in tropical
forests.

  SRP Study of fertilization, litter addition,
and soil phosphorus effects on
fungal and arbuscular mycorrhizal
fungal communities in Panamanian
tropical forest

Null Null

DOI: ./rspb..
. Fungal-host diversity among
mycoheterotrophic plants increases
proportionally to their fungal-host
overlap.

  SRP Host diversity increases propor-
tionally to host overlap among
mycoheterotrophic plants

Null Null

DOI: ./ece.
. Consistent responses of soil
microbial communities to elevated
nutrient inputs in grasslands across
the globe.

  SRP Soil marker gene sequences across
the Nutrient Network

Y Null

DOI: ./pnas.,,
. Severe plant invasions can in-
crease mycorrhizal fungal abun-
dance and diversity.

  SRA Not Accessible Null Null

DOI: ./ismej..
. Host identity is a dominant
driver of mycorrhizal fungal com-
munity composition during
ecosystem development.

  SRP Host preference drives mycorrhizal
fungal niche differentiation
throughout ecosystemdevelopment

Y Null

DOI: ./nph.
. Fungal community analysis by
large-scale sequencing of environ-
mental samples.

  GENBANK Null Null Null

DOI: ./AEM...-
.
. Comparison and Validation of
Some ITS Primer Pairs Useful for
Fungal Metabarcoding Studies

  SRP Pioneer pine forest soil Targeted
Locus (Loci)

Null Null

DOI: ./journal.pone.
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Appendix B: Example queries used for comparing the performance in
different DBMS, Section 4.2.1, Table 2

ZOTU representatives in single location

Query 1 (Q1): provide all sequence representatives (ZOTUs) from a specific sample

SELECT DISTINCT RS.Sequence_pk, RSM.Amount

FROM SampleMetadata1 SM, RefSampleSequence RS, RefSeqSampleMapping RSM

WHERE SM.Sample_id = ‘SRS651086’ AND SM.Sample_pk = RSM.Sample_pk AND

RSM.Sequence_pk = RS.Sequence_pk;

530 tuples

Specific ZOTUs compare to another location

Query 2 (Q2): provide ZOTUs which are specific in one region and not found in another region of the same
country.

SELECT DISTINCT RS.Sequence_pk, RS.RefSeq, SM.Location_name

FROM SampleMetadata1 SM, RefSampleSequence RS, RefSeqSampleMapping RSM

Table A.: (continued)

Article Year PMID Study SRA Study Title PMID
C.R.

SRA
C.R.

. Lack of host specificity leads to
independent assortment of diptero-
carps and ectomycorrhizal fungi
across a soil fertility gradient.

  SRP Root associated fungi Targeted loci
environmental

Null Y

DOI: ./ele.
. Meta-analysis of deep-
sequenced fungal communities in-
dicates limited taxon sharing be-
tween studies and the presence of
biogeographic patterns.

  Multi Null Null Null

DOI: ./nph.
. Sequence Depth, Not PCR
Replication, Improves Ecological
Inference from Next Generation DNA
Sequencing.

  SRP DOB_RepEx Targeted Locus (Loci) Null Y

DOI: ./journal.pone.


. Strong linkage between plant
and soil fungal communities along a
successional coastal dune system.

  SRP Ectomycorrhizal fungal commu-
nities in a relic foredune plain

Null Null

DOI: ./femsec/fiw
. Fungal endophyte communities
reflect environmental structuring
across a Hawaiian landscape.

  SRP Fungal ITS amplicon library from
environmental samples Targeted
Locus (Loci)

Null Null

DOI: ./pnas.
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WHERE SM.Country_name = ‘Estonia’ AND SM.Location_name = ‘Jarvselja’

AND SM.Sample_pk = RSM.Sample_pk AND RSM.Sequence_pk = RS.Sequence_pk

AND RS.RefSeq

NOT IN (SELECT RS2.RefSeq

FROM SampleMetadata1 SM2, RefSampleSequence RS2, RefSeqSampleMapping RSM2

WHERE SM2.Country_name = ‘Estonia’ AND SM2.Location_name = ‘Satakunta’

AND SM2.Sample_pk = RSM2.Sample_pk AND RSM2.Sequence_pk = RS2.Sequence_pk;

5075 tuples

Observance of a specific fungal class

Query 3 (Q3): provide a list of locations (i.e. countries) where particular ZOTUs belonging to a specific class
(i.e. Fungal family) are detected.

SELECT DISTINCT RS.Sequence_pk, SM.Country_name, URS.GenusName

FROM SampleMetadata1 SM, RefSampleSequence RS, RefSeqSampleMapping RSM,

UniteRefSequence URS, AssignTaxa AT

WHERE URS.GenusName = ‘Lactarius’ AND URS.RefSH_pk = AT.RefSH_pk AND

AT.Sequence_pk = RS.Sequence_pk AND RS.Sequence_pk = RSM.Sequence_pk

AND RSM.Sample_pk = SM.Sample_pk;

339 tuples

Appendix C: MonetDB queries used for genereating the outputs
shown in Section 5 Results

Fungal diversity query

Example 1: Retrieve ZOTUs for each phylum for a continent

SELECT DISTINCT RTDB.Phylum_name as phylum, count(DISTINCT

AT.Refsequence_pk) AS zotus

FROM Sample as S, Contain as C, RefSequence as RS, AssignTaxa as AT,

RefTaxonomicDB as RTDB

WHERE S.country_continent = ‘Europe’ AND S.Sample_pk = C.Sample_pk AND

C.Refsequence_pk = RS.Refsequence_pk AND RS.Refsequence_pk =

AT.Refsequence_pk AND AT.percentage_similarity >70 AND

AT.Refsequence_taxonomic_pk = RTDB.Refsequence_taxonomic_pk

GROUP BY RTDB.Phylum_name

Fungal distribution query

Example 2: Select a specific family and provide the ZOTU representatives of the family within the spatial
range between the Tropic of cancer and Tropic of Capricorn

SELECT DISTINCT S.Sample_pk AS plot_id, S.sample_location_country AS

country, S.location_split2 AS location, ABS(S.sample_latitude) AS

dist_from_equator, count(C.Refsequence_pk) as fam_div, count(distinct
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RTDB.sh_unite_id) as unite_div

FROM SampleMD as S, Contain as C, RefSequence as RS, AssignTaxa as AT,

RefTaxonomicDB as RTDB

WHERE RTDB.kingdom_name LIKE ‘Fungi%’ AND RTDB.family_name LIKE

‘Russulaceae%’ AND RTDB.Refsequence_taxonomic_pk =

AT.Refsequence_taxonomic_pk AND AT.Refsequence_pk = RS.Refsequence_pk AND

RS.Refsequence_pk = C.Refsequence_pk AND C.Sample_pk = S.Sample_pk AND ABS(S.sample_latitude) <=

23.5

GROUP BY (S.Sample_pk), S.sample_location_country, S.location_split2,

RTDB.family_name, S.sample_latitude

ORDER BY fam_div DESC

Shared ZOTUs query

Example 3: Retrieving shared data among studies Query1 retrieves ZOTUs grouped for each continent.
Query2 displays how to retrieve data shared among attributes, in this case ZOTUs among continents.

SELECT DISTINCT S.country_continent AS continent, count(DISTINCT

S.country_geoname_pref_en) AS countries, count(DISTINCT S.Sample_pk) AS

samples, count(DISTINCT RS.RefSequence_pk) AS zotus

FROM SampleMD S, Contain C, RefSequence RS

WHERE S.Sample_pk = C.Sample_pk AND C.RefSequence_pk = RS.RefSequence_pk

GROUP BY S.country_continent

SELECT DISTINCT S.country_continent AS continent, count(DISTINCT

RS.RefSequence_pk) AS zotus FROM SampleMD S, Contain C, RefSequence RS

WHERE S.Sample_pk = C.Sample_pk AND C.RefSequence_pk = RS.RefSequence_pk

AND RS.RefSequence_pk IN (SELECT RS2.RefSequence_pk AS zotus2

FROM SampleMD S2, Contain C2, RefSequence RS2

WHERE S2.country_continent = ‘South America’ AND S2.Sample_pk =

C2.Sample_pk AND C2.RefSequence_pk = RS2.RefSequence_pk)

GROUP BY S.country_continent
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