11 research outputs found

    Essential Role of One-carbon Metabolism and Gcn4p and Bas1p Transcriptional Regulators during Adaptation to Anaerobic Growth of Saccharomyces cerevisiae*S⃞

    No full text
    The transcriptional activator Gcn4p is considered the master regulator of amino acid metabolism in Saccharomyces cerevisiae and is required for the transcriptional response to amino acid starvation. Here it is shown that Gcn4p plays a previously undescribed role in regulating adaptation to anaerobic growth. A gcn4 mutant exhibited a highly extended lag phase after a shift to anaerobiosis that was the result of l-serine depletion. In addition, the one-carbon metabolism and purine biosynthesis transcriptional regulator Bas1p were strictly required for anaerobic growth on minimal medium, and this was similarly due to l-serine limitation in bas1 mutants. The induction of one-carbon metabolism during anaerobiosis is needed to increase the supply of l-serine from the glycine and threonine pathways. Using a number of experimental approaches, we demonstrate that these transcription regulators play vital roles in regulating l-serine biosynthesis in the face of increased demand during adaptation to anaerobiosis. This increased l-serine requirement is most likely due to anaerobic remodeling of the cell wall, involving de novo synthesis of a large number of very serine-rich mannoproteins and an increase in the total serine content of the cell wall. During anaerobic starvation for l-serine, this essential amino acid is preferentially directed to the cell wall, indicating the existence of a regulatory mechanism to balance competing cellular demands

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health

    Infective Endocarditis After Transcatheter Versus Surgical Aortic Valve Replacement

    No full text
    Abstract Background Scarce data are available comparing infective endocarditis (IE) following surgical aortic valve replacement (SAVR) and transcatheter aortic valve replacement (TAVR). This study aimed to compare the clinical presentation, microbiological profile, management, and outcomes of IE after SAVR versus TAVR. Methods Data were collected from the “Infectious Endocarditis after TAVR International” (enrollment from 2005 to 2020) and the “International Collaboration on Endocarditis” (enrollment from 2000 to 2012) registries. Only patients with an IE affecting the aortic valve prosthesis were included. A 1:1 paired matching approach was used to compare patients with TAVR and SAVR. Results A total of 1688 patients were included. Of them, 602 (35.7%) had a surgical bioprosthesis (SB), 666 (39.5%) a mechanical prosthesis, 70 (4.2%) a homograft, and 350 (20.7%) a transcatheter heart valve. In the SAVR versus TAVR matched population, the rate of new moderate or severe aortic regurgitation was higher in the SB group (43.4% vs 13.5%; P < .001), and fewer vegetations were diagnosed in the SB group (62.5% vs 82%; P < .001). Patients with an SB had a higher rate of perivalvular extension (47.9% vs 27%; P < .001) and Staphylococcus aureus was less common in this group (13.4% vs 22%; P = .033). Despite a higher rate of surgery in patients with SB (44.4% vs 27.3%; P < .001), 1-year mortality was similar (SB: 46.5%; TAVR: 44.8%; log-rank P = .697). Conclusions Clinical presentation, type of causative microorganism, and treatment differed between patients with an IE located on SB compared with TAVR. Despite these differences, both groups exhibited high and similar mortality at 1-year follow-up

    7. Literatur

    No full text
    corecore