104 research outputs found

    Chemical Composition and Cytoprotective Activities of Methanolic Extract of Asplenium adiantum-nigrum L. (Aspleniaceae)

    Get PDF
    Ferns can be a source of polyphenolic compounds, with the fronds being the main parts described in ethnopharmacological studies. The present study screened polyphenolic phytochemicals and evaluated in vitro activities of a methanolic extract of Asplenium adiantum-nigrum L. fronds (AAM), an Aspleniaceae fern collected from the Prades mountains (Tarragona, Spain). Phytocharacterization by HPLC-MS/MS confirmed that the major flavonoids isolated in AAM are flavanols while the major phytochemicals are phenol acids, with chlorogenic acid being the most representative one. Cytotoxicity, cytoprotection, cellular repair activity, and phototoxicity were determined in vitro in the presence of 0.01, 0.1, and 1 mg/mL of the extract. No cytotoxicity was obtained in any of the cell lines tested: non-tumoral (3T3 and HaCaT) and tumoral (HeLa, HepG2, and A549) cells. Additionally, the polyphenolic extract showed greater protective effect against H2O2 in 3T3 than HaCaT cells. Despite the low total phenolic content of AAM (1405.68 mg phenolic phytochemicals/kg dry extract), the cytoprotective activity of this extract could be associated with the synergistic antioxidant action of their polyphenolic profile. In addition, the extract did not present phototoxicity against the non-cytotoxic 1.8 J/cm2 dose of UVA light in both non-tumoral cell lines

    Inclusion of a pH‑responsive amino acid‑based amphiphile in methotrexate‑loaded chitosan nanoparticles as a delivery strategy in cancer therapy

    Get PDF
    The encapsulation of antitumor drugs in nanosized systems with pH-sensitive behavior is a promising approach that may enhance the success of chemotherapy in many cancers. The nanocarrier dependence on pH might trigger an efficient delivery of the encapsulated drug both in the acidic extracellular environment of tumors and, especially, in the intracellular compartments through disruption of endosomal membrane. In this context, here we reported the preparation of chitosan-based nanoparticles encapsulating methotrexate as a model drug (MTX-CS-NPs), which comprises the incorporation of an amino acid-based amphiphile with pH-responsive properties (77KS) on the ionotropic complexation process. The presence of 77KS clearly gives a pH-sensitive behavior to NPs, which allowed accelerated release of MTX with decreasing pH as well as pH-dependent membrane-lytic activity. This latter performance demonstrates the potential of these NPs to facilitate cytosolic delivery of endocytosed materials. Outstandingly the cytotoxicity of MTX-loaded CS-NPs was higher than free drug to MCF-7 tumor cells and, to a lesser extent, to HeLa cells. Based on the overall results, MTX-CS-NPs modified with the pH-sensitive surfactant 77KS could be potentially useful as a carrier system for intracellular drug delivery and, thus, a promising targeting anticancer chemotherapeutic agent

    Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering

    Get PDF
    A rice tiller is a specialized grain-bearing branch that contributes greatly to grain yield. The MONOCULM 1 (MOC1) gene is the first identified key regulator controlling rice tiller number; however, the underlying mechanism remains to be elucidated. Here we report a novel rice gene, Tillering and Dwarf 1 (TAD1), which encodes a co-activator of the anaphase-promoting complex (APC/C), a multi-subunit E3 ligase. Although the elucidation of co-activators and individual subunits of plant APC/C involved in regulating plant development have emerged recently, the understanding of whether and how this large cell-cycle machinery controls plant development is still very limited. Our study demonstrates that TAD1 interacts with MOC1, forms a complex with OsAPC10 and functions as a co-activator of APC/C to target MOC1 for degradation in a cell-cycle-dependent manner. Our findings uncovered a new mechanism underlying shoot branching and shed light on the understanding of how the cell-cycle machinery regulates plant architecture

    Novel engineered nanobodies specific for N-terminal region of alpha-synuclein recognize Lewy-body pathology and inhibit in-vitro seeded aggregation and toxicity.

    Get PDF
    Nanobodies (Nbs), the single-domain antigen-binding fragments of dromedary heavy-chain antibodies (HCAb), are excellent candidates as therapeutic and diagnostic tools in synucleinopathies because of their small size, solubility and stability. Here, we constructed an immune nanobody library specific to the monomeric form of alpha-synuclein (α-syn). Phage display screening of the library allowed the identification of a nanobody, Nbα-syn01, specific for α-syn. Unlike previously developed nanobodies, Nbα-syn01 recognized the N-terminal region which is critical for in vitro and in vivo aggregation and contains many point mutations involved in early PD cases. The affinity of the monovalent Nbα-syn01 and the engineered bivalent format BivNbα-syn01 measured by isothermal titration calorimetry revealed unexpected results where Nbα-syn01 and its bivalent format recognized preferentially α-syn fibrils compared to the monomeric form. Nbα-syn01 and BivNbα-syn01 were also able to inhibit α-syn-seeded aggregation in vitro and reduced α-syn-seeded aggregation and toxicity in cells showing their potential to reduce α-syn pathology. Moreover, both nanobody formats were able to recognize Lewy-body pathology in human post-mortem brain tissue from PD and DLB cases. Additionally, we present evidence through structural docking that Nbα-syn01 binds the N-terminal region of the α-syn aggregated form. Overall, these results highlight the potential of Nbα-syn01 and BivNbα-syn01 in developing into a diagnostic or a therapeutic tool for PD and related disorders

    APC/C-Mediated Degradation of dsRNA-Binding Protein 4 (DRB4) Involved in RNA Silencing

    Get PDF
    Background: Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome) is a master ubiquitin protein ligase (E3) that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized. Methodology/Principal Findings: In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA). This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2) of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed

    Conserved CDC20 Cell Cycle Functions Are Carried out by Two of the Five Isoforms in Arabidopsis thaliana

    Get PDF
    The CDC20 and Cdh1/CCS52 proteins are substrate determinants and activators of the Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligase and as such they control the mitotic cell cycle by targeting the degradation of various cell cycle regulators. In yeasts and animals the main CDC20 function is the destruction of securin and mitotic cyclins. Plants have multiple CDC20 gene copies whose functions have not been explored yet. In Arabidopsis thaliana there are five CDC20 isoforms and here we aimed at defining their contribution to cell cycle regulation, substrate selectivity and plant development.Studying the gene structure and phylogeny of plant CDC20s, the expression of the five AtCDC20 gene copies and their interactions with the APC/C subunit APC10, the CCS52 proteins, components of the mitotic checkpoint complex (MCC) and mitotic cyclin substrates, conserved CDC20 functions could be assigned for AtCDC20.1 and AtCDC20.2. The other three intron-less genes were silent and specific for Arabidopsis. We show that AtCDC20.1 and AtCDC20.2 are components of the MCC and interact with mitotic cyclins with unexpected specificity. AtCDC20.1 and AtCDC20.2 are expressed in meristems, organ primordia and AtCDC20.1 also in pollen grains and developing seeds. Knocking down both genes simultaneously by RNAi resulted in severe delay in plant development and male sterility. In these lines, the meristem size was reduced while the cell size and ploidy levels were unaffected indicating that the lower cell number and likely slowdown of the cell cycle are the cause of reduced plant growth.The intron-containing CDC20 gene copies provide conserved and redundant functions for cell cycle progression in plants and are required for meristem maintenance, plant growth and male gametophyte formation. The Arabidopsis-specific intron-less genes are possibly "retrogenes" and have hitherto undefined functions or are pseudogenes

    Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage

    Get PDF
    This manuscript provides an overview of the in vitro and in vivo studies reported in the literature focusing on seaweed polysaccharides based hydrogels that have been proposed for applications in regenerative medicine, particularly, in the field of cartilage tissue engineering. For a better understanding of the main requisites for these specific applications, the main aspects of the native cartilage structure, as well as recognized diseases that affect this tissue are briefly described. Current available treatments are also presented to emphasize the need for alternative techniques. The following part of this review is centered on the description of the general characteristics of algae polysaccharides, as well as relevant properties required for designing hydrogels for cartilage tissue engineering purposes. An in-depth overview of the most well known seaweed polysaccharide, namely agarose, alginate, carrageenan and ulvan biopolymeric gels, that have been proposed for engineering cartilage is also provided. Finally, this review describes and summarizes the translational aspect for the clinical application of alternative systems emphasizing the importance of cryopreservation and the commercial products currently available for cartilage treatment.Authors report no declarations of interest. Authors thank the Portuguese Foundation for Science and Technology (FCT) for the PhD fellowship of Elena G. Popa (SFRH/BD/64070/2009) and research project (MIT/ECE/0047/2009). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS
    • …
    corecore