312 research outputs found

    ULTRA–LOW POWER STRAINTRONIC NANOMAGNETIC COMPUTING WITH SAW WAVES: AN EXPERIMENTAL STUDY OF SAW INDUCED MAGNETIZATION SWITCHING AND PROPERTIES OF MAGNETIC NANOSTRUCTURES

    Get PDF
    A recent International Technology Roadmap for Semiconductors (ITRS) report (2.0, 2015 edition) has shown that Moore’s law is unlikely to hold beyond 2028. There is a need for alternate devices to replace CMOS based devices, if further miniaturization and high energy efficiency is desired. The goal of this dissertation is to experimentally demonstrate the feasibility of nanomagnetic memory and logic devices that can be clocked with acoustic waves in an extremely energy efficient manner. While clocking nanomagnetic logic by stressing the magnetostrictive layer of a multiferroic logic element with with an electric field applied across the piezoelectric layer is known to be an extremely energy-efficient clocking scheme, stressing every nanomagnet separately requires individual contacts to each one of them that would necessitate cumbersome lithography. On the other hand, if all nanomagnets are stressed simultaneously with a global voltage, it will eliminate the need for individual contacts, but such a global clock makes the architecture non-pipelined (the next input bit cannot be written till the previous bit has completely propagated through the chain) and therefore, unacceptably slow and error prone. Use of global acoustic wave, that has in-built granularity, would offer the best of both worlds. As the crest and the trough propagate in space with a velocity, nanomagnets that find themselves at a crest are stressed in tension while those in the trough are compressed. All other magnets are relaxed (no stress). Thus, all magnets are not stressed simultaneously but are clocked in a sequentially manner, even though the clocking agent is global. Finally, the acoustic wave energy is distributed over billions of nanomagnets it clocks, which results in an extremely small energy cost per bit per nanomagnet. In summary, acoustic clocking of nanomagnets can lead to extremely energy efficient nanomagnetic computing devices while also eliminating the need for complex lithography. The dissertation work focuses on the following two topics: Acoustic Waves, generated by IDTs fabricated on a piezoelectric lithium niobate substrate, can be utilized to manipulate the magnetization states in elliptical Co nanomagnets. The magnetization switches from its initial single-domain state to a vortex state after SAW stress cycles propagate through the nanomagnets. The vortex states are stable and the magnetization remains in this state until it is ‘reset’ by an external magnetic field. 2. Acoustic Waves can also be utilized to induce 1800 magnetization switching in dipole coupled elliptical Co nanomagnets. The magnetization switches from its initial single-domain ‘up’ state to a single-domain ‘down’ state after SAW tensile/compressive stress cycles propagate through the nanomagnets. The switched state is stable and non-volatile. These results show the effective implementation of a Boolean NOT gate. Ultimately, the advantage of this technology is that it could also perform higher order information processing (not discussed here) while consuming extremely low power. Finally, while we have demonstrated acoustically clocked nanomagnetic memory and logic schemes with Co nanomagnets, materials with higher magnetostriction (such as FeGa) may ultimately improve the switching reliability of such devices. With this in mind we prepared and studied FeGa films using a ferromagnetic resonance (FMR) technique to extract properties of importance to magnetization dynamics in such materials that could have higher magneto elastic coupling than either Co or Ni

    Transient Analysis of Disk Brake By using Ansys Software

    Get PDF
    In this paper the thermo elastic phenomenon occurring in the disk brakes, the occupied heat conduction and elastic equations are solved with contact problems. The numerical simulation for the thermo elastic behavior of disk brake is obtained in the repeated brake condition. The computational results are presented for the distribution of heat flux and temperature on each friction surface between the contacting bodies. Also, thermo elastic instability (TIE) phenomenon (the unstable growth of contact pressure and temperature) is investigated in the present study, and the influence of the material properties on the thermo elastic behaviors (the maximum temperature on the friction surfaces) is investigated to facilitate the conceptual design of the disk brake system. Based on these numerical results, the thermo elastic behaviors of the carbon-carbon composites with excellent mechanical properties are also discussed

    Analysis of aflatoxin B1 and aflatoxigenic mold in commercial poultry feeds in Tamil Nadu, India

    Get PDF
    A total of 48 commercial poultry feed samples collected from different poultry feed manufactures in Tamil Nadu, India were examined for the contamination of aflatoxin B1 (AFB1) and Aspergillus flavus. AFB1 in the samples was estimated by sandwich ELISA and the presence of A. flavus was detected by Real-Time PCR assay. Real-Time PCR analysis using A. flavus- specific omt primers confirmed the presence of A. flavus in all the samples tested. ELISA results indicated that the AFB1 contents in the poultry feeds ranged from 1.0 to18.7 ppb, which were below the permissible safe limits for poultry bird consumption and health. The results suggest adoption of good man-ufacturing practices by the commercial poultry feed manufacturers during procurement of feed ingredients, handling, storage and processing which might have suppressed the growth of A. flavus and aflatoxin contamination

    Awareness and practices of cervical cancer screening among women in Rajnandgaon district, central India: health education is the need of the hour

    Get PDF
    Background: Cervical cancer is a leading cause of morbidity and mortality among rural women in India. Early screening has been shown to be the most effective measure to prevent the disease. However, lack of awareness, lack of infrastructure, social stigma and fear are barriers to cervical cancer screening. The study was undertaken to assess the knowledge and practice among rural women regarding cervical cancer and screening tests with the aim of helping health professionals to revise policies and practices.Methods: It was a cross-sectional questionnaire-based study, conducted from January 2018 to September 2018 in the Department of Obstetrics and Gynecology at Government Medical College Rajnandgaon. A tertiary care hospital located in the southwest Chhattisgarh. A total of 506 women aged 21-65 years were included and assessed. Qualitative data were presented as frequencies and percentages by using SPSS version 21.Results: Of the total 506 respondents, 15.41 % had heard of cervical cancer, while 8.1% about cervical cancer screening. Unfortunately, only 1.2% women were ever been screened by Pap test. Although importance of screening had been thoroughly explained to the respondents, despite the fact only 57.1% showed willingness to undergo cervical cancer screening in the future. However, 63.9%women having gynecological complains were significantly associated with better attitude towards future cervical cancer screening than women without having gynaecological complains.Conclusions: Awareness and practice of the screening for cervical cancer was very poor in the rural population as well as in health care providers. Hence intensive health education is the need of the hour to change the scenario

    Constraining The Universal Lepton Asymmetry

    Full text link
    The relic cosmic background neutrinos accompanying the cosmic microwave background (CMB) photons may hide a universal lepton asymmetry orders of magnitude larger than the universal baryon asymmetry. At present, the only direct way to probe such an asymmetry is through its effect on the abundances of the light elements produced during primordial nucleosynthesis. The relic light element abundances also depend on the baryon asymmetry, parameterized by the baryon density parameter (eta_B = n_B/n_gamma = 10^(-10)*eta_10), and on the early-universe expansion rate, parameterized by the expansion rate factor (S = H'/H) or, equivalently by the effective number of neutrinos (N_nu = 3 + 43(S^2 - 1)/7). We use data from the CMB (and Large Scale Structure: LSS) along with the observationally-inferred relic abundances of deuterium and helium-4 to provide new bounds on the universal lepton asymmetry, finding for eta_L, the analog of eta_B, 0.072 +/- 0.053 if it is assumed that N_nu = 3 and, 0.115 +/- 0.095 along with N_nu = 3.3^{+0.7}_{-0.6}, if N_nu is free to vary

    Optical analysis of samarium doped sodium bismuth silicate glass

    Get PDF
    Samarium doped sodium bismuth silicate glass was synthesized using the melt quenching method. Detailed optical spectroscopic studies of the glassy material were carried out in the UV–Vis-NIR spectral range. Using the optical absorption spectra Judd-Ofelt (JO) parameters are derived. The calculated values of the JO parameters are utilized in evaluating the various radiative parameters such as electric dipole line strengths (Sed), radiative transition probabilities (Arad), radiative lifetimes (τrad), fluorescence branching ratios (β) and the integrated absorption cross- sections (σa) for stimulated emission from various excited states of Sm3 +‡ ion. The principal fluorescence transitions are identified by recording the fluorescence spectrum. Our analysis revealed that the novel glassy system has the optimum values for the key parameters viz. spectroscopic quality factor, optical gain, stimulated emission cross section and quantum efficiency, which are required for a high performance optical amplifier. Calculated chromaticity co-ordinates (0.61, 0.38) also confirm its application potential in display devices

    Chronic kidney disease in children: the global perspective

    Get PDF
    In contrast to the increasing availability of information pertaining to the care of children with chronic kidney disease (CKD) from large-scale observational and interventional studies, epidemiological information on the incidence and prevalence of pediatric CKD is currently limited, imprecise, and flawed by methodological differences between the various data sources. There are distinct geographic differences in the reported causes of CKD in children, in part due to environmental, racial, genetic, and cultural (consanguinity) differences. However, a substantial percentage of children develop CKD early in life, with congenital renal disorders such as obstructive uropathy and aplasia/hypoplasia/dysplasia being responsible for almost one half of all cases. The most favored end-stage renal disease (ESRD) treatment modality in children is renal transplantation, but a lack of health care resources and high patient mortality in the developing world limits the global provision of renal replacement therapy (RRT) and influences patient prevalence. Additional efforts to define the epidemiology of pediatric CKD worldwide are necessary if a better understanding of the full extent of the problem, areas for study, and the potential impact of intervention is desired
    • …
    corecore