6 research outputs found

    The interplay between alpha-Synuclein clearance and spreading

    Get PDF
    Parkinson's Disease (PD) is a complex neurodegenerative disorder classically characterized by movement impairment. Pathologically, the most striking features of PD are the loss of dopaminergic neurons and the presence of intraneuronal protein inclusions primarily composed of alpha-synuclein (alpha-syn) that are known as Lewy bodies and Lewy neurites in surviving neurons. Though the mechanisms underlying the progression of PD pathology are unclear, accumulating evidence suggests a prion-like spreading of alpha-syn pathology. The intracellular homeostasis of alpha-syn requires the proper degradation of the protein by three mechanisms: chaperone-mediated autophagy, macroautophagy and ubiquitin-proteasome. Impairment of these pathways might drive the system towards an alternative clearance mechanism that could involve its release from the cell. This increased release to the extracellular space could be the basis for alpha-syn propagation to different brain areas and, ultimately, for the spreading of pathology and disease progression. Here, we review the interplay between alpha-syn degradation pathways and its intercellular spreading. The understanding of this interplay is indispensable for obtaining a better knowledge of the molecular basis of PD and, consequently, for the design of novel avenues for therapeutic intervention.publishersversionpublishe

    Proteome response at the edge of protein aggregation

    No full text
    Proteins adopt defined structures and are crucial to most cellular functions. Their misfolding and aggregation is associated with numerous degenerative human disorders such as type II diabetes, Huntington's or Alzheimer's diseases. Here, we aim to understand why cells promote the formation of protein foci. Comparison of two amyloid-β-peptide variants, mostly insoluble but differently recruited by the cell (inclusion body versus diffused), reveals small differences in cell fitness and proteome response. We suggest that the levels of oxidative stress act as a sensor to trigger protein recruitment into foci. Our data support a common cytoplasmic response being able to discern and react to the specific properties of polypeptides

    Proteome response at the edge of protein aggregation.

    Get PDF
    Proteins adopt defined structures and are crucial to most cellular functions. Their misfolding and aggregation is associated with numerous degenerative human disorders such as type II diabetes, Huntington's or Alzheimer's diseases. Here, we aim to understand why cells promote the formation of protein foci. Comparison of two amyloid-β-peptide variants, mostly insoluble but differently recruited by the cell (inclusion body versus diffused), reveals small differences in cell fitness and proteome response. We suggest that the levels of oxidative stress act as a sensor to trigger protein recruitment into foci. Our data support a common cytoplasmic response being able to discern and react to the specific properties of polypeptides.peerReviewe

    CSF neurogranin as a neuronal damage marker in CJD: a comparative study with AD.

    Get PDF
    Objective: To investigate whether cerebrospinal fluid (CSF) neurogranin concentrations are altered in sporadic Creutzfeldt-Jakob disease (CJD), comparatively with Alzheimer's disease (AD), and associated with neuronal degeneration in brain tissue. Methods: CSF neurogranin, total tau, neurofilament light (NFL) and 14-3-3 protein were measured in neurological controls (NCs, n=64), AD (n=46) and CJD (n=81). The accuracy of neurogranin discriminating the three diagnostic groups was evaluated. Correlations between neurogranin and neurodegeneration biomarkers, demographic, genetic and clinical data were assessed. Additionally, neurogranin expression in postmortem brain tissue was studied. Results: Compared with NC, CSF neurogranin concentrations were increased in CJD (4.75 times of NC; p<0.001, area under curve (AUC), 0.96 (95% CI 0.93 to 0.99) and AD (1.94 times of NC; p<0.01, AUC 0.73, 95% CI 0.62 to 0.82), and were able to differentiate CJD from AD (p<0.001, AUC 0.85, 95% CI 0.78 to 0.92). CSF tau was increased in CJD (41 times of NC) and in AD (3.1 times of NC), both at p<0.001. In CJD, neurogranin positively correlated with tau (r=0.55, p<0.001) and was higher in 14-3-3-positivity (p<0.05), but showed no association with NFL (r=0.08, p=0.46). CJD-MM1/MV1 cases displayed higher neurogranin levels than VV2 cases. Neurogranin was increased at early CJD disease stages and was a good prognostic marker of survival time in CJD. In brain tissue, neurogranin was detected in the cytoplasm, membrane and postsynaptic density fractions of neurons, with reduced levels in AD, and more significantly in CJD, where they correlated with synaptic and axonal markers. Conclusions: Neurogranin is a new biomarker of prion pathogenesis with diagnostic and prognostic abilities, which reflects the degree of neuronal damage in brain tissue in a CJD subtype manner. Keywords: alzheimer’s disease; cerebrospinal fluid; creutzfeldt-jakob disease; neurodegenerative dementias; neurofilament light; neurogranin; tau

    Membrane binding, internalization, and sorting of alpha-synuclein in the cell

    Get PDF
    Abstract Alpha-synuclein (aSyn) plays a crucial role in Parkinson’s disease (PD) and other synucleinopathies, since it misfolds and accumulates in typical proteinaceous inclusions. While the function of aSyn is thought to be related to vesicle binding and trafficking, the precise molecular mechanisms linking aSyn with synucleinopathies are still obscure. aSyn can spread in a prion-like manner between interconnected neurons, contributing to the propagation of the pathology and to the progressive nature of synucleinopathies. Here, we investigated the interaction of aSyn with membranes and trafficking machinery pathways using cellular models of PD that are amenable to detailed molecular analyses. We found that different species of aSyn can enter cells and form high molecular weight species, and that membrane binding properties are important for the internalization of aSyn. Once internalized, aSyn accumulates in intracellular inclusions. Interestingly, we found that internalization is blocked in the presence of dynamin inhibitors (blocked membrane scission), suggesting the involvement of the endocytic pathway in the internalization of aSyn. By screening a pool of small Rab-GTPase proteins (Rabs) which regulate membrane trafficking, we found that internalized aSyn partially colocalized with Rab5A and Rab7. Initially, aSyn accumulated in Rab4A-labelled vesicles and, at later stages, it reached the autophagy-lysosomal pathway (ALP) where it gets degraded. In total, our study emphasizes the importance of membrane binding, not only as part of the normal function but also as an important step in the internalization and subsequent accumulation of aSyn. Importantly, we identified a fundamental role for Rab proteins in the modulation of aSyn processing, clearance and spreading, suggesting that targeting Rab proteins may hold important therapeutic value in PD and other synucleinopathies
    corecore