129 research outputs found

    Influence of pressure and temperature on key physicochemical properties of corn stover-derived biochar

    Get PDF
    This study focuses on analyzing the effect of both the peak temperature and pressure on the properties of biochar produced through slow pyrolysis of corn stover, which is a common agricultural waste that currently has little or no value. The pyrolysis experiments were carried out in a fixed-bed reactor at different peak temperatures (400, 525 and 650 °C) and absolute pressures (0.1, 0.85 and 1.6 MPa). The inert mass flow rate (at NTP conditions) was adjusted in each test to keep the gas residence time constant within the reactor. The as-received corn stover was pyrolyzed into a biochar without any physical pre-treatment as a way to reduce the operating costs. The properties of biochars showed that high peak temperature led to high fixed-carbon contents, high aromaticity and low molar H:C and O:C ratios; whereas a high pressure only resulted in a further decrease in the O:C ratio and a further increase in the fixed-carbon content. Increasing the operating pressure also resulted in a higher production of pyrolysis gas at the expense of water formation

    Iminium Salts of ω-Dithiafulvenylpolyenals: An Easy Entry to the Corresponding Aldehydes and Doubly Proaromatic Nonlinear Optic-phores

    Get PDF
    A short, high-yielding route to ω-dithiafulvenylpolyenals (1) via the corresponding iminium salts (2) and starting from trimethyl-1,3-dithiolium tetrafluoroborate is reported. The Knoevenagel reactions of either 1 or 2 with isoxazolone-containing acceptors afford merocyanines 7 and 9, in a process that is often accompanied by a vinylene-shortening side reaction. Experimental and theoretical studies reveal that compounds 7 and 9, featuring two proaromatic end groups, are strongly polarized and show good second-order nonlinear optical responses

    Balanced Hermitian metrics from SU(2)-structures

    Full text link
    We study the intrinsic geometrical structure of hypersurfaces in 6-manifolds carrying a balanced Hermitian SU(3)-structure, which we call {\em balanced} SU(2)-{\em structures}. We provide conditions which imply that such a 5-manifold can be isometrically embedded as a hypersurface in a manifold with a balanced SU(3)-structure. We show that any 5-dimensional compact nilmanifold has an invariant balanced SU(2)-structure as well as new examples of balanced Hermitian SU(3)-metrics constructed from balanced SU(2)-structures. Moreover, for n=3,4n=3,4, we present examples of compact manifolds, endowed with a balanced SU(n)-structure, such that the corresponding Bismut connection has holonomy equal to SU(n)

    Long-term immune response accompanies clinical outcomes in severe asthmatics treated with anti-IL-5/IL-5R biologics

    Full text link
    This work was supported by ISCIII - Instituto de Salud Carlos III, FIS (Fondo de Investigación Sanitaria - Spanish Health Research Fund) grants PI21/00896 and FI19/00067; Ciber de Enfermedades Respiratorias (CIBERES); SEAIC grants 22A07; BASEAS STUDY (Basophils in EosinophilicAsthma) Study Code ESR-20-20764 AstraZeneca International; Comunidad de Madrid grant PEJ2021-AI_BMD-22320 and FEDER funds (Fondo Europeo de Desarrollo Regiona

    New one- and two-dimensional 4H-pyranylidene NLO-phores

    Get PDF
    Dipolar, V-shaped compounds derived from 4H-pyranylidene-linked acceptors have been synthesized, and their linear and nonlinear optical properties (displaying μβ values up to 3000 × 10−48 esu) have been compared to those of analogous one-dimensional derivatives. The pyranylidene ring behaves strictly as a spacer, and not as a donor group

    Numerical Model for Describing the Segregation Phenomenon in Lightweight Concrete Using Density Sections

    Get PDF
    In this work, numerical models were obtained for describing the segregation phenomenon in lightweight aggregate concrete. To that end, a numerical methodology based on the generation of geometric models of finite elements has been applied, selecting those that describe better this phenomenon. The use of lightweight aggregate concretes (LWC) allows greater design flexibility and substantial cost savings. It is also well known that it contributes to a positive impact on the energy consumption of a building due to the high-thermal resistance values. However, lightweight concretes are susceptible to present aggregate segregation due to density differences between its components during concrete vibration. Segregation in concrete may strongly affect the concrete global properties. This fact justifies the needs for the identification and quantification of this phenomenon, in order to estimate the concrete segregation experimentally, a LWC was mixed in laboratory conditions. Controlled segregation was caused applying different times of internal vibration in a cylinder specimen. The specimens were horizontally sectioned in order to obtain the density in each section because the segregation index can be estimated obtaining a relation by comparing the densities of the upper and lower parts. Firstly, ANOVA test was performed to determine the statistical significance (p<0.05) of the differences in the density of the different sections, differences in the aggregate type and differences in the time of concrete vibration. Results show that there is a significant difference of each section and there is no significant difference of each lightweight aggregate used to mix the concrete in spite of their different density. In order to model the segregation in the LWC, at first, linear models were considered and rejected because for not explaining the phenomenon. However, the application of numerical models shows good results to describe the phenomenon of segregation in LWC.This research was funded by the University of Alicante (GRE13-03) and (VIGROB-256)

    Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy

    Get PDF
    Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV) vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF) were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF). Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP) 2 and 9 and the content of Connective Tissue Growth Factor (CTGF). These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders
    corecore