318 research outputs found
Phylogeny and evolution of medical species of candida and related taxa: a multigenic analysis
Hemiascomycetes are species of yeasts within the order Saccharomycetales. The order encompasses disparate genera with a variety of life styles, including opportunistic human pathogens (e.g., Candida albicans), plant pathogens (e.g., Eremothecium gossypii), and cosmopolitan yeasts associated with water and decaying vegetation. To analyze the phylogeny of medically important species of yeasts, we selected 38 human pathogenic and related strains in the order Saccharomycetales. The DNA sequences of six nuclear genes were analyzed by maximum likelihood and Bayesian phylogenetic methods. The maximum likelihood analysis of the combined data for all six genes resolved three major lineages with significant support according to Bayesian posterior probability. One clade was mostly comprised of pathogenic species of Candida. Another major group contained members of the family Metschnikowiaceae as a monophyletic group, three species of Debaryomyces, and strains of Candida guilliermondii. The third clade consisted exclusively of species of the family Saccharomycetaceae. Analysis of the evolution of key characters indicated that both codon reassignment and coenzyme Q9 likely had single origins with multiple losses. Tests of correlated character evolution revealed that these two traits evolved independently
Taxonomy, nomenclature and phylogeny of three cladosporium-like hyphomycetes, Sorocybe resinae, Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae
Using morphological characters, cultural characters, large subunit and
internal transcribed spacer rDNA (ITS) sequences, and provisions of the
International Code of Botanical Nomenclature, this paper attempts to resolve
the taxonomic and nomenclatural confusion surrounding three species of
cladosporium-like hyphomycetes. The type specimen of Hormodendrum
resinae, the basis for the use of the epithet resinae for the
creosote fungus {either as Hormoconis resinae or Cladosporium
resinae) represents the mononematous synanamorph of the synnematous,
resinicolous fungus Sorocybe resinae. The phylogenetic relationships
of the creosote fungus, which is the anamorph of Amorphotheca
resinae, are with the family Myxotrichaceae, whereas S.
resinae is related to Capronia (Chaetothyriales,
Herpotrichiellaceae). Our data support the segregation of
Pycnostysanus azaleae, the cause of bud blast of rhododendrons, in
the recently described anamorph genus Seifertia, distinct from
Sorocybe; this species is related to the Dothideomycetes but
its exact phylogenetic placement is uncertain. To formally stabilize the name
of the anamorph of the creosote fungus, conservation of Hormodendrum
resinae with a new holotype should be considered. The paraphyly of the
family Myxotrichaceae with the Amorphothecaceae suggested by
ITS sequences should be confirmed with additional genes
Pseudovirgaria, a fungicolous hyphomycete genus
The genus Pseudovirgaria, based on P. hyperparasitica, was recently introduced for a mycoparasite of rust sori of various species of Frommeëlla, Pucciniastrum and Phragmidium in Korea. In the present study, an older name introduced by Saccardo based on European material, Rhinotrichum griseum, is shown to resemble P. hyperparasitica. Morphological study and ITS barcodes from fresh collections of R. griseum from Austria on uredinia and telia of Phragmidium bulbosum on Rubus spp. reveal that it is distinct from P. hyperparasitica. The status of the genus Rhinotrichum, introduced for a fungus occurring on dry wood, remains unclear. Pseudovirgaria grisea comb. nov. is therefore proposed for the mycoparasite occurring on rust fungi in Europe, and an epitype is designated from the recent collections
Recommended from our members
High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales
Fungal mitospores may function as dispersal units and/ or spermatia, and thus play a role in
distribution and/or mating of species that produce them. Mitospore production in
ectomycorrhizal (EcM) Pezizales is rarely reported, but here we document mitospore production
by a high diversity of EcM Pezizales on three continents, in both hemispheres. We sequenced the
internal transcribed spacer (ITS) and partial large subunit (LSU) nuclear rDNA from 292 spore
mats (visible mitospore clumps) collected in Argentina, Chile, China, Mexico, 22 South America,
and the USA between 2009-2012. We collated spore mat ITS sequences with 105 fruit body and
47 EcM root sequences to generate operational taxonomic units (OTUs). Phylogenetic inferences
were made through analyses of both molecular datasets.
Forty-eight OTUs from spore mats represented ≥ six independent EcM Pezizales lineages and
included truffles and cup fungi. Seven OTUs within three putative lineages have no known
meiospore stage. Mitospores failed to germinate on sterile media, or form ectomycorrhizas on
Quercus, Pinus, and Populus seedlings, consistent with a hypothesized role of spermatia. The
broad geographic range, high frequency, and phylogenetic diversity of spore mats produced by
EcM Pezizales suggests that a cryptic mitospore stage may be an important biological feature of
this group in terms of mating, reproduction, and/or dispersal.This is the author's manuscript version. The published article is copyrighted by Blackwell Publishing Ltd. and can be found at: http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291365-294X.Keywords: cryptic diversity, mitospore, ectomycorrhizal Pezizales, Environmental sequencing, truffl
Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits
Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild. Mycorrhizal symbioses have evolved repeatedly in diverse fungal lineages. A large phylogenomic analysis sheds light on genomic changes associated with transitions from saprotrophy to symbiosis, including divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.Peer reviewe
An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex
Bemisia tabaci is a cryptic whitefly-species complex that includes some of the most damaging pests and plant-virus vectors of a diverse range of food and fibre crops worldwide. We combine experimental evidence of: (i) differences in reproductive compatibility, (ii) hybrid verification using a specific nuclear DNA marker and hybrid fertility confirmation and (iii) high-throughput sequencing-derived mitogenomes, to show that the “Mediterranean” (MED) B. tabaci comprises at least two distinct biological species; the globally invasive MED from the Mediterranean Basin and the “African silver-leafing” (ASL) from sub-Saharan Africa, which has no associated invasion records. We demonstrate that, contrary to its common name, the “ASL” does not induce squash silver-leafing symptoms and show that species delimitation based on the widely applied 3.5% partial mtCOI gene sequence divergence threshold produces discordant results, depending on the mtCOI region selected. Of the 292 published mtCOI sequences from MED/ASL groups, 158 (54%) are low quality and/or potential pseudogenes. We demonstrate fundamental deficiencies in delimiting cryptic B. tabaci species, based solely on partial sequences of a mitochondrial barcoding gene. We advocate an integrative approach to reveal the true species richness within cryptic species complexes, which is integral to the deployment of effective pest and disease management strategies
Serpentine Soils Do Not Limit Mycorrhizal Fungal Diversity
Background: Physiologically stressful environments tend to host depauperate and specialized biological communities. Serpentine soils exemplify this phenomenon by imposing well-known constraints on plants; however, their effect on other organisms is still poorly understood. Methodology/Principal Findings: We used a combination of field and molecular approaches to test the hypothesis that serpentine fungal communities are species-poor and specialized. We conducted surveys of ectomycorrhizal fungal diversity from adjacent serpentine and non-serpentine sites, described fungal communities using nrDNA Internal Transcribed Spacer (ITS) fragment and sequence analyses, and compared their phylogenetic community structure. Although we detected low fungal overlap across the two habitats, we found serpentine soils to support rich fungal communities that include representatives from all major fungal lineages. We failed to detect the phylogenetic signature of endemic clades that would result from specialization and adaptive radiation within this habitat. Conclusions/Significance: Our results indicate that serpentine soils do not constitute an extreme environment for ectomycorrhizal fungi, and raise important questions about the role of symbioses in edaphic tolerance and the maintenanc
Transoceanic Dispersal and Subsequent Diversification on Separate Continents Shaped Diversity of the Xanthoparmelia pulla Group (Ascomycota)
In traditional morphology-based concepts many species of lichenized fungi have world-wide distributions. Molecular data have revolutionized the species delimitation in lichens and have demonstrated that we underestimated the diversity of these organisms. The aim of this study is to explore the phylogeography and the evolutionary patterns of the Xanthoparmelia pulla group, a widespread group of one of largest genera of macrolichens. We used a dated phylogeny based on nuITS and nuLSU rDNA sequences and performed an ancestral range reconstruction to understand the processes and explain their current distribution, dating the divergence of the major lineages in the group. An inferred age of radiation of parmelioid lichens and the age of a Parmelia fossil were used as the calibration points for the phylogeny. The results show that many species of the X. pulla group as currently delimited are polyphyletic and five major lineages correlate with their geographical distribution and the biosynthetic pathways of secondary metabolites. South Africa is the area where the X. pulla group radiated during the Miocene times, and currently is the region with the highest genetic, morphological and chemical diversity. From this center of radiation the different lineages migrated by long-distance dispersal to others areas, where secondary radiations developed. The ancestral range reconstruction also detected that a secondary lineage migrated from Australia to South America via long-distance dispersal and subsequent continental radiation
Factors That Affect Large Subunit Ribosomal DNA Amplicon Sequencing Studies of Fungal Communities: Classification Method, Primer Choice, and Error
Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project naïve Bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50–100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys
- …