702 research outputs found

    Chemical chaperone treatment reduces intracellular accumulation of mutant collagen IV and ameliorates the cellular phenotype of a COL4A2 mutation that causes haemorrhagic stroke

    Get PDF
    Haemorrhagic stroke accounts for approximately 20% of stroke cases and porencephaly is a clinical consequence of perinatal cerebral haemorrhaging. Here we report the identification of a novel dominant G702D mutation in the collagen domain of COL4A2 (collagen IV alpha chain 2) in a family displaying porencephaly with reduced penetrance. COL4A2 is the obligatory protein partner of COL4A1 but in contrast to most COL4A1 mutations, the COL4A2 mutation does not lead to eye or kidney disease. Analysis of dermal biopsies from patient and his unaffected father, who also carries the mutation, revealed that both display basement membrane (BM) defects. Intriguingly, defective collagen IV incorporation into the dermal BM was only observed in the patient and was associated with endoplasmic reticulum (ER) retention of COL4A2 in primary dermal fibroblasts. This intracellular accumulation led to ER-stress, unfolded protein response activation, reduced cell proliferation and increased apoptosis. Interestingly, absence of ER retention of COL4A2 and ER-stress in cells from the unaffected father indicate that accumulation and/or clearance of mutant COL4A2 from the ER may be a critical modifier for disease development. Our analysis also revealed that mutant collagen IV is degraded via the proteasome. Importantly, treatment of patient cells with a chemical chaperone decreased intracellular COL4A2, ER-stress and apoptosis, demonstrating that reducing intracellular collagen accumulation can ameliorate the cellular phenotype of COL4A2 mutations. Importantly, these data highlight that manipulation of chaperone levels, intracellular collagen accumulation and ER-stress are potential therapeutic options for collagen IV diseases including haemorrhagic stroke

    The prognostic value of tumor mitotic rate in children and adolescents with cutaneous melanoma:A retrospective cohort study

    Get PDF
    Background: Mitotic rate is a strong predictor of outcome in adult patients with primary cutaneous melanoma, but for children and adolescent patients this is unknown. Objective: We sought to assess the prognostic value of primary tumor mitotic rate in children and adolescents with primary melanoma. Methods: This was a cohort study of 156 patients who were <20 years of age and who had clinically localized cutaneous melanoma. Patients <12 years of age were classified as children and those 12 to 19 years of age as adolescents. Clinicopathologic and outcome data were collected. Recurrence-free and melanoma-specific survival were calculated. Univariable and multivariable analyses were performed using Cox proportional hazard models. Results: Thirteen of 156 patients (8%) were children. The mitotic rate was ≥1/mm2 in 104 patients (67%) and correlated with increasing Breslow thickness. A positive sentinel node was found in 23 of 61 patients (38%) in whom a sentinel lymph node biopsy specimen was obtained. The median follow-up was 61 months. Five-year melanoma-specific and recurrence-free survival rates were 91% and 84%, respectively. Mitotic rate was a stronger predictor of outcome than tumor thickness and was the only factor independently associated with recurrence-free survival. Limitations: This research was conducted at a single institution and the sample size was small. Conclusion: Mitotic rate is an independent predictor of recurrence-free survival in children and adolescents with clinically localized melanoma

    Invisible Z-Boson Decays at e+e- Colliders

    Full text link
    The measurement of the invisible Z-boson decay width at e+e- colliders can be done "indirectly", by subtracting the Z-boson visible partial widths from the Z-boson total width, or "directly", from the process e+e- -> \gamma \nu \bar{\nu}. Both procedures are sensitive to different types of new physics and provide information about the couplings of the neutrinos to the Z-boson. At present, measurements at LEP and CHARM II are capable of constraining the left-handed Z\nu\nu-coupling, 0.45 <~ g_L <~ 0.5, while the right-handed one is only mildly bounded, |g_R| <= 0.2. We show that measurements at a future e+e- linear collider at different center-of-mass energies, \sqrt{s} = MZ and \sqrt{s}s ~ 170 GeV, would translate into a markedly more precise measurement of the Z\nu\nu-couplings. A statistically significant deviation from Standard Model predictions will point toward different new physics mechanisms, depending on whether the discrepancy appears in the direct or the indirect measurement of the invisible Z-width. We discuss some scenarios which illustrate the ability of different invisible Z-boson decay measurements to constrain new physics beyond the Standard Model

    Monitoring Patient Response to Pembrolizumab With Peripheral Blood Exhaustion Marker Profiles

    Get PDF
    Exhausted T cells are effector T cells that are silenced due to continuous T cell receptor (TCR) stimulation from persistent antigens. Characteristics of exhaustion include the increased expression of multiple inhibitory receptors such as programme death-1[PD-1], lymphocyte activation gene 3 [LAG-3], T cell Ig and mucin domain [TIM-3], the loss of effector cytokine secretion and altered transcriptional profile. The PD-1/PD-L1 interaction induces functional exhaustion of tumor-reactive cytotoxic T cells and interferes with anti-tumor T cell immunity. T cell exhaustion has been observed in metastatic melanoma patients where the exhaustion of tumor specific T cells suggests that tumor clearance has been impeded and contributed to tumor immune escape. Checkpoint immunotherapies are antibodies designed to block the interaction between the inhibitory receptors expressed on T cells and their respective ligands. Therapies such as anti-PD-1 (Pembrolizumab and Nivolumab) block these inhibitory receptors and are associated with a significant improvement in overall survival and progression free survival. However, only 20–40% of metastatic melanoma patients experience long-term benefit. In a cohort of 16 metastatic melanoma patients receiving pembrolizumab, blood was serially collected before each infusion (mean 8.3; range 1–12 cycles). The presence of inhibitory markers LAG-3, TIM-3, and PD-1 on the surface of T cells was examined and assessed in relation to patient response to identify if inhibitory markers can be used to differentiate responders from non-responders for Pembrolizumab. We confirmed that across a range of cycles (range 1–26) of pembrolizumab, PD-1 expression was significantly higher on CD4+ T cells from non-responders compared to responders and TIM-3 expressed on the surface of CD8+ T cells was significantly higher in non-responders compared to responders. This longitudinal data confirms previous studies that assessed single timepoints. This study provides preliminary evidence that PD-1 and TIM-3 may be predictive of non-responders when assessed over multiple treatment cycles

    The OPERA experiment Target Tracker

    Get PDF
    The main task of the Target Tracker detector of the long baseline neutrino oscillation OPERA experiment is to locate in which of the target elementary constituents, the lead/emulsion bricks, the neutrino interactions have occurred and also to give calorimetric information about each event. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multi-anode photomultiplier tubes. All the elements used in the construction of this detector and its main characteristics are described.Comment: 25 pages, submitted to Nuclear Instrument and Method

    Leading order analysis of neutrino induced dimuon events in the CHORUS experiment

    Get PDF
    We present a leading order QCD analysis of a sample of neutrino induced charged-current events with two muons in the final state originating in the lead-scintillating fibre calorimeter of the CHORUS detector. The results are based on a sample of 8910 neutrino and 430 antineutrino induced opposite-sign dimuon events collected during the exposure of the detector to the CERN Wide Band Neutrino Beam between 1995 and 1998. % with Eμ1,Eμ2>5E_{\mu 1},E_{\mu 2} > 5 GeV and Q2>3Q^2 > 3 GeV2^2 collected %between 1995 and 1998. The analysis yields a value of the charm quark mass of \mc = (1.26\pm 0.16 \pm 0.09) \GeVcc and a value of the ratio of the strange to non-strange sea in the nucleon of κ=0.33±0.05±0.05\kappa = 0.33 \pm 0.05 \pm 0.05, improving the results obtained in similar analyses by previous experiments.Comment: Submitted to Nuclear Physics
    • …
    corecore