11,295 research outputs found

    Spin transport in graphene/transition metal dichalcogenide heterostructures

    Get PDF
    Since its discovery, graphene has been a promising material for spintronics: its low spin-orbit coupling, negligible hyperfine interaction, and high electron mobility are obvious advantages for transporting spin information over long distances. However, such outstanding transport properties also limit the capability to engineer active spintronics, where strong spin-orbit coupling is crucial for creating and manipulating spin currents. To this end, transition metal dichalcogenides, which have larger spin-orbit coupling and good interface matching, appear to be highly complementary materials for enhancing the spin-dependent features of graphene while maintaining its superior charge transport properties. In this review, we present the theoretical framework and the experiments performed to detect and characterize the spin-orbit coupling and spin currents in graphene/transition metal dichalcogenide heterostructures. Specifically, we will concentrate on recent measurements of Hanle precession, weak antilocalization and the spin Hall effect, and provide a comprehensive theoretical description of the interconnection between these phenomena.Comment: 21 pages, 11 figures. This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Nano Letters, copyright\c{opyright}American Chemical Society after peer review. To access the final edited and published work see http://pubs.rsc.org/en/Content/ArticleLanding/2018/CS/C7CS00864

    O VI and Multicomponent H I Absorption Associated with a Galaxy Group in the Direction of PG0953+415: Physical Conditions and Baryonic Content

    Get PDF
    We report the discovery of an O VI absorption system at z(abs) = 0.14232 in a high resolution FUV spectrum of PG0953+415 obtained with the Space Telescope Imaging Spectrograph (STIS). Both lines of the O VI 1032, 1038 doublet and multicomponent H I Lya absorption are detected, but the N V doublet and the strong lines of C II and Si III are not apparent. We examine the ionization mechanism of the O VI absorber and find that while theoretical considerations favor collisional ionization, it is difficult to observationally rule out photoionization. If the absorber is collisionally ionized, it may not be in equilibrium due to the rapid cooling of gas in the appropriate temperature range. Non-equilibrium collisionally ionized models are shown to be consistent with the observations. A WIYN survey of galaxy redshifts near the sight line has revealed a galaxy at a projected distance of 395 kpc separated by ~130 km/s from this absorber, and three additional galaxies are found within 130 km/s of this redshift with projected separations ranging from 1.0 Mpc to 3.0 Mpc. Combining the STIS observations of PG0953+415 with previous high S/N GHRS observations of H1821+643, we derive a large number of O VI absorbers per unit redshift, dN/dz ~20. We use this sample to obtain a first estimate of the cosmological mass density of the O VI systems at z ~ 0. If further observations confirm the large dN/dz derived for the O VI systems, then these absorbers trace a significant reservoir of baryonic matter at low redshift.Comment: Accepted for publication in Ap.J., vol. 542 (Oct. 10, 2000

    Electron degeneracy and intrinsic magnetic properties of epitaxial Nb:SrTiO3_3 thin-films controlled by defects

    Get PDF
    We report thermoelectric power experiments in e-doped thin films of SrTiO3_3 (STO) which demonstrate that the electronic band degeneracy can be lifted through defect management during growth. We show that even small amounts of cationic vacancies, combined with epitaxial stress, produce a homogeneous tetragonal distortion of the films, resulting in a Kondo-like resistance upturn at low temperature, large anisotropic magnetoresistance, and non-linear Hall effect. Ab-initio calculations confirm a different occupation of each band depending on the degree of tetragonal distortion. The phenomenology reported in this paper for tetragonally distorted e-doped STO thin films, is similarto that observed in LaAlO3_3/STO interfaces and magnetic STO quantum wells.Comment: 5 pages, 5 figure

    Proteins maintain hydration at high [KCl] concentration regardless of content in acidic amino acids

    Get PDF
    Proteins of halophilic organisms, which accumulate molar concentrations of KCl in their cytoplasm, have a much higher content in acidic amino acids than proteins of mesophilic organisms. It has been proposed that this excess is necessary to maintain proteins hydrated in an environment with low water activity, either via direct interactions between water and the carboxylate groups of acidic amino acids or via cooperative interactions between acidic amino acids and hydrated cations. Our simulation study of five halophilic proteins and five mesophilic counterparts does not support either possibility. The simulations use the AMBER ff14SB force field with newly optimized Lennard-Jones parameters for the interactions between carboxylate groups and potassium ions. We find that proteins with a larger fraction of acidic amino acids indeed have higher hydration levels, as measured by the concentration of water in their hydration shell and the number of water/protein hydrogen bonds. However, the hydration level of each protein is identical at low (bKCl = 0.15 mol/kg) and high (bKCl = 2 mol/kg) KCl concentrations; excess acidic amino acids are clearly not necessary to maintain proteins hydrated at high salt concentration. It has also been proposed that cooperative interactions between acidic amino acids in halophilic proteins and hydrated cations stabilize the folded protein structure and would lead to slower dynamics of the solvation shell. We find that the translational dynamics of the solvation shell is barely distinguishable between halophilic and mesophilic proteins; if such a cooperative effect exists, it does not have that entropic signature

    Theoretical X-Ray Absorption Debye-Waller Factors

    Full text link
    An approach is presented for theoretical calculations of the Debye-Waller factors in x-ray absorption spectra. These factors are represented in terms of the cumulant expansion up to third order. They account respectively for the net thermal expansion σ(1)(T)\sigma^{(1)}(T), the mean-square relative displacements σ2(T)\sigma^2(T), and the asymmetry of the pair distribution function σ(3)(T)\sigma^{(3)}(T). Similarly, we obtain Debye-Waller factors for x-ray and neutron scattering in terms of the mean-square vibrational amplitudes u2(T)u^2(T). Our method is based on density functional theory calculations of the dynamical matrix, together with an efficient Lanczos algorithm for projected phonon spectra within the quasi-harmonic approximation. Due to anharmonicity in the interatomic forces, the results are highly sensitive to variations in the equilibrium lattice constants, and hence to the choice of exchange-correlation potential. In order to treat this sensitivity, we introduce two prescriptions: one based on the local density approximation, and a second based on a modified generalized gradient approximation. Illustrative results for the leading cumulants are presented for several materials and compared with experiment and with correlated Einstein and Debye models. We also obtain Born-von Karman parameters and corrections due to perpendicular vibrations.Comment: 11 pages, 8 figure

    Acção do vento sobre torres: análises comparativas entre RSA e Eurocódigos

    Get PDF
    Neste trabalho indicam-se as principais diferenças que se podem observar ao nível da acção do vento, entre o Regulamento de Segurança e Acções (RSA) e Eurocódigos (EC), quando aplicáveis à análise e dimensionamento de torres. Para tal, procede-se à análise com-parativa de diversos parâmetros, colocando-se comentários gerais sobre cada um deles, para um melhor entendimento sobre a sua abordagem e filosofia. Finalmente, são apresentados, confrontados e discutidos os resultados obtidos de acordo com cada uma das normas mencio-nadas, tendo como base o caso de estudo de uma torre utilizada para radiocomunicações
    corecore