28 research outputs found

    Espacios para la inclusión. Compartiendo experiencias en la Universidade da Coruña

    Full text link
    [EN] This communication presents the results of a collaborative and inclusive experience carried out in a subject of the Degree in Occupational Therapy (OT) and another of the “Program Espazo Compartido” (EC), of socio-labor and inclusive training for people with cognitive disabilities, belonging to the University da Coruña (UDC). It was done in the first semester of 2020/2021, with the participation of 71 students (57 from OT and 14 from EC), divided into three groups, and 6 teachers, through the “collaborative learning” methodology, included in the teaching guide. During the face-to-face sessions, with the prism of interactive teaching, the students presented their work, according to the assigned topic on subject content, followed by a reflective and collaborative debate. The teachers used a rubric to evaluate, that allowed assessing both the work and the proactive participation and life skills of the students. The average grade was 3.47 (out of 5 in TO) and 1.27 (out of 2 in CE), and the degree of satisfaction was very high. This communication, under the set of "innovative teaching methodologies", has demonstrated its viability and beneficial results from an inclusive first experience, allowing the acquisition of specific, transversal and core competencies.[ES] En esta comunicación se exponen los resultados de una experiencia colaborativa e inclusiva realizada en una asignatura del Grado de Terapia Ocupacional(TO) y otra del Programa Espazo Compartido(EC), de formación e inclusión socio-laboral para personas con discapacidad cognitiva, pertenecientes a la Universidade da Coruña(UDC). Se ejecutó en el primer cuatrimestre del 2020/2021, con la participación de 71 estudiantes (57 de TO y 14 de EC), divididos en tres grupos, y 6 profesores, a través de la metodología “aprendizaje colaborativo”, incluida en la guía docente. Durante las sesiones presenciales, con el prisma de docencia interactiva, los estudiantes presentaban sus trabajos, según el tema asignado sobre contenidos de la asignatura, seguido de un debate de carácter reflexivo y colaborativo. Los profesores utilizaron una rúbrica de evaluación que permitió valorar tanto el trabajo, como la participación proactiva y habilidades para la vida de los estudiantes. La nota media fue de 3,47 (sobre 5 en TO) y de 1,27 (sobre 2 en EC), y el grado de satisfacción, muy elevado. Esta comunicación, bajo el conjunto de “metodologías docentes innovadoras”, ha demostrado su viabilidad y resultados beneficiosos de una primera experiencia inclusiva, permitiendo la adquisición de las competencias específicas, transversales y nucleares.Pousada García, T.; Vila Paz, A.; Suárez Iglesias, C.; Villar Gómez, A.; Alfonso Vázquez, V.; Santos Del Riego, S. (2021). Espacios para la inclusión. Compartiendo experiencias en la Universidade da Coruña. En IN-RED 2021: VII Congreso de Innovación Edicativa y Docencia en Red. Editorial Universitat Politècnica de València. 453-463. https://doi.org/10.4995/INRED2021.2021.13751OCS45346

    Age-dependent multisystem parkinsonian features in a novel neuromelanin-producing transgenic mouse model

    Get PDF
    Trabajo presentado en el 19th National Meeting of the Spanish Society of Neuroscience, celebrado en Lleida (España), del 3 al 5 de noviembre de 2021Parkinson’s disease (PD) is characterized by a preferential degeneration of neurons that accumulate with age the pigment neuromelanin, especially neurons from substantia nigra (SN) and locus coeruleus (LC). We aim to characterize the consequences of age-dependent intracellular neuromelanin accumulation in catecholaminergic neuronal populations to understand the relationship between this process and the vulnerability of these cells in PD, as well as its impact on healthy brain aging. We previously generated a rat model exhibiting progressive unilateral SN production of neuromelanin that showed parkinsonian-like neuropathology and motor deficits1. Here, we generated a new neuromelanin-producing rodent model, based on the tissue-specific constitutive expression of human tyrosinase (hTyr) under the tyrosine hydroxylase (TH) promoter (Tg-TH-hTyr), that mimics the bilateral distribution of pigmentation within the aging human brain (i.e. catecholaminergic groups A1-A142). In parallel to neuromelanin intracellular buildup, Tg-TH-hTyr mice exhibited major PD features, including motor and non-motor behavioral alterations, inclusion body formation and degeneration of specific catecholaminergic neuronal groups. Genome-wide transcriptomic analysis of neuromelanin-laden neurons revealed alterations in PD-related biological pathways that correlate with human PD postmortem studies. Our results show that modelling human neuromelanin accumulation in rodents leads to age-dependent catecholaminergic dysfunction and molecular alterations resulting in motor and non-motor deficits, which is relevant to PD pathology and brain aging.Peer reviewe

    Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis

    Get PDF
    Brain tyrosinase; Neuromelanin production; Parkinson’sTirosinasa cerebral; Producció de neuromelanina; ParkinsonTirosinasa cerebral; Producción de neuromelanina; ParkinsonIn Parkinson's disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD

    Transcriptomic changes linked to age-dependent neuromelanin accumulation in a new Parkinson's disease mouse model

    Get PDF
    Resumen del trabajo presentado en el 50th Annual Meeting Society for Neuroscience, celebrado de forma virtual del 8 al 11 de noviembre de 2021In Parkinson's disease (PD) there is a preferential degeneration of neuromelanin (NM)-containing neurons, especially neurons from the Substantia Nigra (SN) but also from the Ventral Tegmental Area (VTA) and Locus Coeruleus (LC). We generated a new NM-producing mouse model, based on the tissue-specific constitutive expression of human tyrosinase (hTyr) under the tyrosine hydroxylase (TH) promoter (tgNM), that mimics the distribution and age-dependent accumulation of NM in the human brain (i.e. catecholaminergic groups A1-A14). TgNM mice exhibited major PD features, including both motor and non-motor behavioral alterations, inclusion body formation, neuronal degeneration in lower brainstem areas (LC) together with neuronal dysfunction in higher brainstem areas (SN and VTA). In order to understand the mechanisms by which NM accumulation in specific brain areas ultimately interferes with the normal functioning of cells, we characterized genome-wide transcriptomic changes linked to the intracellular presence and progressive accumulation of NM in two NM-accumulating neuronal subpopulations (SN and VTA) that are known to be differentially susceptible to PD pathology. We selectively isolated single dopaminergic NM-containing neurons by laser capture microdissection from male and female wild-type and tgNM animals at 3 months, 12 months and 20 months of age (n=4-6 mice per group). We performed differential expression analysis, resulting in statistically significant differentially expressed genes at all ages (p-value<0.5). Gene-set enrichment analysis (GSEA) with Reactome Pathway Database led to the identification of altered biological pathways in tgNM related to neuroinflammation, vesicle-mediated transport and lipid metabolism, transcription and translation, mitochondrial function and cell cycle (senescence) (False Discovery Rate<0.05). Targeted-based validation of candidate RNA species was performed in microdissected samples by quantitative real-time PCR and candidate biological pathways were validated at the protein level by western blot in dissected ventral midbrain tissues from biological replicates. The transcriptomic profiles identified in this project contribute to our understanding of selective vulnerability in PD and brain aging, and points to key biological pathways and molecular targets in prodromal and early PD

    FADS2 Genetic Variance in Combination with Fatty Acid Intake Might Alter Composition of the Fatty Acids in Brain

    Get PDF
    Multiple lines of evidence suggest that fatty acids (FA) play an important role in cognitive function. However, little is known about the functional genetic pathways involved in cognition. The main goals of this study were to replicate previously reported interaction effects between breast feeding (BF) and FA desaturase (FADS) genetic variation on IQ and to investigate the possible mechanisms by which these variants might moderate BF effect, focusing on brain expression. Using a sample of 534 twins, we observed a trend in the moderation of BF effects on IQ by FADS2 variation. In addition, we made use of publicly available gene expression databases from both humans (193) and mice (93) and showed that FADS2 variants also correlate with FADS1 brain expression (P-value<1.1E-03). Our results provide novel clues for the understanding of the genetic mechanisms regulating FA brain expression and improve the current knowledge of the FADS moderation effect on cognition

    Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013

    Get PDF
    The emergence in humans of the A(H1N1)pdm09 influenza virus, a complex reassortant virus of swine origin, highlighted the importance of worldwide influenza virus surveillance in swine. To date, large-scale surveillance studies have been reported for southern China and North America, but such data have not yet been described for Europe. We report the first large-scale genomic characterization of 290 swine influenza viruses collected from 14 European countries between 2009 and 2013. A total of 23 distinct genotypes were identified, with the 7 most common comprising 82% of the incidence. Contrasting epidemiological dynamics were observed for two of these genotypes, H1huN2 and H3N2, with the former showing multiple long-lived geographically isolated lineages, while the latter had short-lived geographically diffuse lineages. At least 32 human-swine transmission events have resulted in A(H1N1)pdm09 becoming established at a mean frequency of 8% across European countries. Notably, swine in the United Kingdom have largely had a replacement of the endemic Eurasian avian virus-like (“avian-like”) genotypes with A(H1N1)pdm09-derived genotypes. The high number of reassortant genotypes observed in European swine, combined with the identification of a genotype similar to the A(H3N2)v genotype in North America, underlines the importance of continued swine surveillance in Europe for the purposes of maintaining public health. This report further reveals that the emergences and drivers of virus evolution in swine differ at the global level.IMPORTANCE The influenza A(H1N1)pdm09 virus contains a reassortant genome with segments derived from separate virus lineages that evolved in different regions of the world. In particular, its neuraminidase and matrix segments were derived from the Eurasian avian virus-like (“avian-like”) lineage that emerged in European swine in the 1970s. However, while large-scale genomic characterization of swine has been reported for southern China and North America, no equivalent study has yet been reported for Europe. Surveillance of swine herds across Europe between 2009 and 2013 revealed that the A(H1N1)pdm09 virus is established in European swine, increasing the number of circulating lineages in the region and increasing the possibility of the emergence of a genotype with human pandemic potential. It also has implications for veterinary health, making prevention through vaccination more challenging. The identification of a genotype similar to the A(H3N2)v genotype, causing zoonoses at North American agricultural fairs, underlines the importance of continued genomic characterization in European swine

    Defective mitochondrial protein import contributes to complex I-induced mitochondrial dysfunction and neurodegeneration in Parkinson’s disease

    Get PDF
    Abstract Mitochondria are the prime energy source in most eukaryotic cells, but these highly dynamic organelles are also involved in a multitude of cellular events. Disruption of mitochondrial homeostasis and the subsequent mitochondrial dysfunction plays a key role in the pathophysiology of Parkinson’s disease (PD). Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for neuronal survival. Here, we have studied the mitochondrial protein import system in in vitro and in vivo models of PD. Complex I inhibition, a characteristic pathological hallmark in PD, impaired mitochondrial protein import, which was associated with a downregulation of two key components of the system: translocase of the outer membrane 20 (TOM20) and translocase of the inner membrane 23 (TIM23), both in vitro and in vivo. In vitro, those changes were associated with OXPHOS protein downregulation, accumulation of aggregated proteins inside mitochondria and downregulation of mitochondrial chaperones. Most of these pathogenic changes, including mitochondrial dysfunction and dopaminergic cell death, were abrogated by TOM20 or TIM23 overexpression, in vitro. However, in vivo, while TOM20 overexpression exacerbated neurodegeneration in both substantia nigra (SN) pars compacta (pc) and striatum, overexpression of TIM23 partially protected dopaminergic neurons in the SNpc. These results highlight mitochondrial protein import dysfunction and the distinct role of two of their components in the pathogenesis of PD and suggest the need for future studies to further characterize mitochondrial protein import deficit in the context of PD

    Overexpression of TFEB Drives a Pleiotropic Neurotrophic Effect and Prevents Parkinson's Disease-Related Neurodegeneration

    No full text
    The possible implication of transcription factor EB (TFEB) as a therapeutic target in Parkinson's disease has gained momentum since it was discovered that TFEB controls lysosomal biogenesis and autophagy and that its activation might counteract lysosomal impairment and protein aggregation. However, the majority of putative direct targets of TFEB described to date is linked to a range of biological processes that are not related to the lysosomal-autophagic system. Here, we assessed the effect of overexpressing TFEB with an adeno-associated viral vector in mouse substantia nigra dopaminergic neurons. We demonstrate that TFEB overexpression drives a previously unknown bona fide neurotrophic effect, giving rise to cell growth, higher tyrosine hydroxylase levels, and increased dopamine release in the striatum. TFEB overexpression induces the activation of the mitogen-activated protein kinase 1/3 (MAPK1/3) and AKT pro-survival pathways, phosphorylation of mTORC1 effectors 4E-binding protein 1 (4E-BP1) and S6 kinase B1 (S6K1), and increased protein synthesis. We show that TFEB overexpression prevents dopaminergic cell loss and counteracts atrophy and the associated protein synthesis decline in the MPTP mouse model of Parkinson's disease. Our results suggest that increasing TFEB activity might prevent neuronal death and restore neuronal function in Parkinson's disease and other neurodegenerative diseases through different mechanisms

    Performance of Choline Geranate Deep Eutectic Solvent as Transdermal Permeation Enhancer: An In Vitro Skin Histological Study

    No full text
    In the present research work, we addressed the changes in skin by which deep eutectic solvents (DES) enhanced transdermal permeation of bioactive compounds and propose a rationale for this mechanism. Several studies showed that these unusual liquids were ideal solvents for transdermal delivery of biomolecules, but to date, no histological studies relating the action of DES to changes in the structure of the outer skin barrier have been reported. In the research effort described herein, we presented an in-depth analysis of the changes induced in the skin by choline geranate DES, a compound with proven capabilities of enhancing transdermal permeation without deleterious impacts on the cells. The results obtained showed that a low percentage of DES acted as a transient disruptor of the skin structure, facilitating the passage of bioactive compounds dissolved in it

    Scaffolds and tissue regeneration: An overview of the functional properties of selected organic tissues

    No full text
    Tissue engineering plays a significant role both in the re-establishment of functions and regeneration of organic tissues. Success in manufacturing projects for biological scaffolds, for the purpose of tissue regeneration, is conditioned by the selection of parameters such as the biomaterial, the device architecture, and the specificities of the cells making up the organic tissue to create, in vivo, a microenvironment that preserves and further enhances the proliferation of a specific cell phenotype. To support this approach, we have screened scientific publications that show biomedical applications of scaffolds, biomechanical, morphological, biochemical, and hemodynamic characteristics of the target organic tissues, and the possible interactions between different cell matrices and biological scaffolds. This review article provides an overview on the biomedical application of scaffolds and on the characteristics of the (bio)materials commonly used for manufacturing these biological devices used in tissue engineering, taking into consideration the cellular specificity of the target tissue.Contract grant sponsor: FAPESP, Sao Paulo, Brazil; contract grant numbers: 2013/03181-6; 2013/19300-4Contract grant sponsor: FINEP Innovation and Research; contract grant number: 01.13.0286.0
    corecore