36 research outputs found

    Distributed Query Plan Generation Using Multiobjective Genetic Algorithm

    Get PDF
    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability

    A meta-analysis of the associations between common variation in the PDE8B gene and thyroid hormone parameters, including assessment of longitudinal stability of associations over time and effect of thyroid hormone replacement

    Get PDF
    Objective Common variants in PDE8B are associated with TSH but apparently without any effect on thyroid hormone levels that is difficult to explain. Furthermore, the stability of the association has not been examined in longitudinal studies or in patients on levothyroxine (l-T4). Design Totally, four cohorts were used (n=2557): the Busselton Health Study (thyroid function measured on two occasions), DEPTH, EFSOCH (selective cohorts), and WATTS (individuals on l-T4). Methods Meta-analysis to clarify associations between the rs4704397 single nucleotide polymorphism in PDE8B on TSH, tri-iodothyronine (T3), and T4 levels. Results Meta-analysis confirmed that genetic variation in PDE8B was associated with TSH (P=1.64×10−10 0.20 s.d./allele, 95% confidence interval (CI) 0.142, 0.267) and identified a possible new association with free T4 (P=0.023, −0.07 s.d./allele, 95% CI −0.137, −0.01), no association was seen with free T3 (P=0.218). The association between PDE8B and TSH was similar in 1981 (0.14 s.d./allele, 95% CI 0.04, 0.238) and 1994 (0.20 s.d./allele, 95% CI 0.102, 0.300) and even more consistent between PDE8B and free T4 in 1981 (−0.068 s.d./allele, 95% CI −0.167, 0.031) and 1994 (−0.07 s.d./allele, 95% CI −0.170, 0.030). No associations were seen between PDE8B and thyroid hormone parameters in individuals on l-T4. Conclusion Common genetic variation in PDE8B is associated with reciprocal changes in TSH and free T4 levels that are consistent over time and lost in individuals on l-T4. These findings identify a possible genetic marker reflecting variation in thyroid hormone output that will be of value in epidemiological studies and provides additional evidence that PDE8B is involved in TSH signaling in the thyroid

    A genome-wide association study identifies protein quantitative trait loci (pQTLs)

    Get PDF
    There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10 -57), CCL4L1 (p = 3.9×10-21), IL18 (p = 6.8×10-13), LPA (p = 4.4×10-10), GGT1 (p = 1.5×10-7), SHBG (p = 3.1×10-7), CRP (p = 6.4×10-6) and IL1RN (p = 7.3×10-6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10-40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways. © 2008 Melzer et al

    Whole-genome sequence-based analysis of thyroid function

    Get PDF
    Tiina Paunio on työryhmän UK10K Consortium jäsen.Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF >= 1%) associated with TSH and FT4 (N = 16,335). For TSH, we identify a novel variant in SYN2 (MAF = 23.5%, P = 6.15 x 10(-9)) and a new independent variant in PDE8B (MAF = 10.4%, P = 5.94 x 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/ SLC25A52 (MAF = 3.2%, P = 1.27 x 10(-9)) tagging a rare TTR variant (MAF = 0.4%, P = 2.14 x 10(-11)). All common variants explain >= 20% of the variance in TSH and FT4. Analysis of rare variants (MAFPeer reviewe

    Management of hypothyroidism with combination thyroxine (T4) and triiodothyronine (T3) hormone replacement in clinical practice: a review of suggested guidance

    No full text
    Abstract Background Whilst trials of combination levothyroxine/liothyronine therapy versus levothyroxine monotherapy for thyroid hormone replacement have not shown any superiority, there remains a small subset of patients who do not feel well on monotherapy. Whilst current guidelines do not suggest routine use of combination therapy they do acknowledge a trial in such patients may be appropriate. It appears that use of combination therapy and dessicated thyroid extract is not uncommon but often being used by non-specialists and not adequately monitored. This review aims to provide practical advice on selecting patients, determining dose and monitoring of such a trial. Main body It is important to select the correct patient for a trial so as to not delay diagnosis or potentially worsen an undiagnosed condition. An appropriate starting dose may be calculated but accuracy is limited by available formulations and cost. Monitoring of thyroid function, benefits and adverse effects are vital in the trial setting given lack of evidence of safe long term use. Also important is that patients understand set up of the trial, potential risks involved and give consent. Conclusion Whilst evidence is lacking on whether a small group of patients may benefit from combination therapy a trial may be indicated in those who remain symptomatic despite adequate levothyroxine monotherapy. This should be undertaken by clinicians experienced in the field with appropriate monitoring for adverse outcomes in both short and long term

    Novel insights into thyroid hormones from the study of common genetic variation

    No full text
    Effects of thyroid hormones in individual tissues are determined by many factors beyond their serum levels, including local deiodination and expression and activity of thyroid hormone transporters. These effects are difficult to examine by traditional techniques, but a novel approach that exploits the existence of common genetic variants has yielded new and surprising insights. Convincing evidence indicates a role of type 1 iodothyronine deiodinase (D1) in determining the serum T4:T3 ratio and a role of phosphodiesterase 8B in determining TSH levels. In addition, studies of type 2 iodothyronine deiodinase (D2) variants have shown that thyroid hormones contribute to osteoarthritis and these variants influence Intelligence quotient alterations associated with iodine deficiency. Preliminary evidence suggests associations between TSH-receptor variants and fasting glucose level, D1 variants and insulin-like growth factor I production, and D2 variants and hypertension, psychological well-being and response to T3 or T4 treatment. Intriguingly, most of these associations are independent of serum thyroid hormone levels, which highlights the importance of local regulation of thyroid hormones in tissues. Future research might reveal novel roles for thyroid hormones in obesity, cardiovascular disease, osteoporosis and depression and could have implications for interpretation of thyroid function tests and individualization of thyroid hormone replacement therapy

    Bromination of cyclopropanes using potassium bromide and cerium(IV) ammonium nitrate (CAN): synthesis of 1,3-dibromides

    No full text
    The bromination of cyclopropanes using potassium bromide and cerium(IV) ammonium nitrate (CAN) in a two-phase system consisting of water and dichloromethane affording 1,3-dibromides in excellent yields is reported

    Cerium(IV) ammonium nitrate (CAN)-mediated sulfonylation of styrenes: some interesting observations

    No full text
    Sulfonyl radicals generated by the oxidation of sodium arylsulfinates with cerium(IV) ammonium nitrate (CAN) undergo addition reaction with styrenes to give the sulfonylated products in good yields

    Oxidative cyclisation of cinnamyl ethers mediated by CAN: a stereoselective synthesis of 3,4-trans disubstituted tetrahydrofuran derivatives

    No full text
    The oxidative cyclisation of cinnamyl ethers mediated by cerium(IV) ammonium nitrate results in the stereospecific formation of 3,4-trans disubstituted tetrahydrofuran derivatives in moderate to good yields
    corecore