75 research outputs found

    Influence of interspecific interference competition on the genetic structure of Calopteryx splendens populations

    Get PDF
    Understanding the effects of interspecific competition on genetic diversity will deepen our knowledge on species evolution. In the case of Calopteryx splendens and C. virgo, sympatric damselfly species, interspecific interference competition by C. virgo has remarkable effects on territoriality of C. splendens resulting in reproductive character displacement. Since territoriality is correlated with phenotype and mating success, we investigated the effects of interspecific interference competition on genetic diversity of C. splendens populations. Using amplified fragment length polymorphisms (AFLP), we determined the population genetic structure of 12 C. splendens populations and used the genetic diversity information to relate heterozygosity of C. splendens to abundance of C. virgo in sympatric populations. We found that heterozygosity of C. splendens males decreased with increasing abundance of C. virgo males. This result most likely reflects changes in effective population size due to interspecific interference competition and shows an effect on genetic structure in damselfly populations.</p

    Rapid changes in DNA methylation associated with the initiation of reproduction in a small songbird

    Get PDF
    Species with a circannual life cycle need to match the timing of their life history events to the environment to maximize fitness. However, our understanding of how circannual traits such as timing of reproduction are regulated on a molecular level remains limited. Recent studies have implicated that epigenetic mechanisms can be an important part in the processes that regulate circannual traits. Here, we explore the role of DNA methylation in mediating reproductive timing in a seasonally breeding bird species, the great tit (Parus major), using genome-wide DNA methylation data from individual females that were blood sampled repeatedly throughout the breeding season. We demonstrate rapid and directional changes in DNA methylation within the promoter region of several genes, including a key transcription factor (NR5A1) known from earlier studies to be involved in the initiation of timing of reproduction. Interestingly, the observed changes in DNA methylation at NR5A1 identified here are in line with earlier gene expression studies of reproduction in chicken, indicating that the observed shifts in DNA methylation at this gene can have a regulatory role. Our findings provide an important step towards elucidating the genomic mechanism that mediates seasonal timing of a key life history traits and provide support for the idea that epigenetic mechanisms may play an important role in circannual traits.Peer reviewe

    Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus

    Get PDF
    Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located expression quantitative trait loci (eQTL) underlying the variation in gene expression in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis- and trans-regulatory regions. Transe-QTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. One observed hotspot colocated with a QTL recently found to underlie salinity tolerance in the threespine stickleback. However, most other observed hotspots did not colocate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats.Peer reviewe

    Seasonal Variation in Genome-Wide DNA Methylation Patterns and the Onset of Seasonal Timing of Reproduction in Great Tits

    Get PDF
    In seasonal environments, timing of reproduction is a trait with important fitness consequences, but we know little about the molecular mechanisms that underlie the variation in this trait. Recently, several studies put forward DNA methylation as a mechanism regulating seasonal timing of reproduction in both plants and animals. To understand the involvement of DNA methylation in seasonal timing of reproduction, it is necessary to examine within-individual temporal changes in DNA methylation, but such studies are very rare. Here, we use a temporal sampling approach to examine changes in DNA methylation throughout the breeding season in female great tits (Parus major) that were artificially selected for early timing of breeding. These females were housed in climate-controlled aviaries and subjected to two contrasting temperature treatments. Reduced representation bisulfite sequencing on red blood cell derived DNA showed genome-wide temporal changes in more than 40,000 out of the 522,643 CpG sites examined. Although most of these changes were relatively small (mean within-individual change of 6%), the sites that showed a temporal and treatment-specific response in DNA methylation are candidate sites of interest for future studies trying to understand the link between DNA methylation patterns and timing of reproduction.Peer reviewe

    Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons

    Get PDF
    BackgroundDNA methylation is likely a key mechanism regulating changes in gene transcription in traits that show temporal fluctuations in response to environmental conditions. To understand the transcriptional role of DNA methylation we need simultaneous within-individual assessment of methylation changes and gene expression changes over time. Within-individual repeated sampling of tissues, which are essential for trait expression is, however, unfeasible (e.g. specific brain regions, liver and ovary for reproductive timing). Here, we explore to what extend between-individual changes in DNA methylation in a tissue accessible for repeated sampling (red blood cells (RBCs)) reflect such patterns in a tissue unavailable for repeated sampling (liver) and how these DNA methylation patterns are associated with gene expression in such inaccessible tissues (hypothalamus, ovary and liver). For this, 18 great tit (Parus major) females were sacrificed at three time points (n=6 per time point) throughout the pre-laying and egg-laying period and their blood, hypothalamus, ovary and liver were sampled.ResultsWe simultaneously assessed DNA methylation changes (via reduced representation bisulfite sequencing) and changes in gene expression (via RNA-seq and qPCR) over time. In general, we found a positive correlation between changes in CpG site methylation in RBCs and liver across timepoints. For CpG sites in close proximity to the transcription start site, an increase in RBC methylation over time was associated with a decrease in the expression of the associated gene in the ovary. In contrast, no such association with gene expression was found for CpG site methylation within the gene body or the 10kb up- and downstream regions adjacent to the gene body.ConclusionTemporal changes in DNA methylation are largely tissue-general, indicating that changes in RBC methylation can reflect changes in DNA methylation in other, often less accessible, tissues such as the liver in our case. However, associations between temporal changes in DNA methylation with changes in gene expression are mostly tissue- and genomic location-dependent. The observation that temporal changes in DNA methylation within RBCs can relate to changes in gene expression in less accessible tissues is important for a better understanding of how environmental conditions shape traits that temporally change in expression in wild populations.</div

    Fine-tuning of seasonal timing of breeding is regulated downstream in the underlying neuro-endocrine system in a small songbird

    Get PDF
    The timing of breeding is under selection in wild populations as a result of climate change, and understanding the underlying physiological processes mediating this timing provides insight into the potential rate of adaptation. Current knowledge on this variation in physiology is, however, mostly limited to males. We assessed whether individual differences in the timing of breeding in females are reflected in differences in candidate gene expression and, if so, whether these differences occur in the upstream (hypothalamus) or downstream (ovary and liver) parts of the neuroendocrine system. We used 72 female great tits from two generations of lines artificially selected for early and late egg laying, which were housed in climate-controlled aviaries and went through two breeding cycles within 1 year. In the first breeding season we obtained individual egg-laying dates, while in the second breeding season, using the same individuals, we sampled several tissues at three time points based on the timing of the first breeding attempt. For each tissue, mRNA expression levels were measured using qPCR for a set of candidate genes associated with the timing of reproduction and subsequently analysed for differences between generations, time points and individual timing of breeding. We found differences in gene expression between generations in all tissues, with the most pronounced differences in the hypothalamus. Differences between time points, and early- and late-laying females, were found exclusively in the ovary and liver. Altogether, we show that fine-tuning of the seasonal timing of breeding, and thereby the opportunity for adaptation in the neuroendocrine system, is regulated mostly downstream in the neuro-endocrine system.Peer reviewe

    Temporally replicated DNA methylation patterns in great tit using reduced representation bisulfite sequencing

    Get PDF
    Seasonal timing of reproduction is an important fitness trait in many plants and animals but the underlying molecular mechanism for this trait is poorly known. DNA methylation is known to affect timing of reproduction in various organisms and is therefore a potential mechanism also in birds. Here we describe genome wide data aiming to detect temporal changes in methylation in relation to timing of breeding using artificial selection lines of great tits (Parus major) exposed to contrasting temperature treatments. Methylation levels of DNA extracted from erythrocytes were examined using reduced representation bisulfite sequencing (RRBS). In total, we obtained sequencing data from 63 libraries over four different time points from 16 birds with on average 20 million quality filtered reads per library. These data describe individual level temporal variation in DNA methylation throughout the breeding season under experimental temperature regimes and provides a resource for future studies investigating the role of temporal changes in DNA methylation in timing of reproduction.Peer reviewe

    Temporal changes in DNA methylation and RNA expression in a small song bird : within- and between-tissue comparisons

    Get PDF
    BackgroundDNA methylation is likely a key mechanism regulating changes in gene transcription in traits that show temporal fluctuations in response to environmental conditions. To understand the transcriptional role of DNA methylation we need simultaneous within-individual assessment of methylation changes and gene expression changes over time. Within-individual repeated sampling of tissues, which are essential for trait expression is, however, unfeasible (e.g. specific brain regions, liver and ovary for reproductive timing). Here, we explore to what extend between-individual changes in DNA methylation in a tissue accessible for repeated sampling (red blood cells (RBCs)) reflect such patterns in a tissue unavailable for repeated sampling (liver) and how these DNA methylation patterns are associated with gene expression in such inaccessible tissues (hypothalamus, ovary and liver). For this, 18 great tit (Parus major) females were sacrificed at three time points (n=6 per time point) throughout the pre-laying and egg-laying period and their blood, hypothalamus, ovary and liver were sampled.ResultsWe simultaneously assessed DNA methylation changes (via reduced representation bisulfite sequencing) and changes in gene expression (via RNA-seq and qPCR) over time. In general, we found a positive correlation between changes in CpG site methylation in RBCs and liver across timepoints. For CpG sites in close proximity to the transcription start site, an increase in RBC methylation over time was associated with a decrease in the expression of the associated gene in the ovary. In contrast, no such association with gene expression was found for CpG site methylation within the gene body or the 10kb up- and downstream regions adjacent to the gene body.ConclusionTemporal changes in DNA methylation are largely tissue-general, indicating that changes in RBC methylation can reflect changes in DNA methylation in other, often less accessible, tissues such as the liver in our case. However, associations between temporal changes in DNA methylation with changes in gene expression are mostly tissue- and genomic location-dependent. The observation that temporal changes in DNA methylation within RBCs can relate to changes in gene expression in less accessible tissues is important for a better understanding of how environmental conditions shape traits that temporally change in expression in wild populations.Peer reviewe
    • …
    corecore