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Supervised Normalization 

The choice of normalization procedure is a critical step in the analysis of microarray data given 

that associated effects on the structure of the data can influence the validity/applicability of 

downstream statistical models essential for a study’s objectives.  Quantile normalization has 

become the most common method of normalization in microarray-based studies of gene 

expression.  Whilst this has been shown to be highly satisfactory for standard comparisons of 

group means, such as those in case-control studies (Bolstad et al. 2003), this method is likely 

inappropriate for inference based on expression variances, such as the analyses which are at the 

heart of quantitative genetics.  This is due to the fact that quantile normalization is based on 

equalizing the distributions of probe intensities across arrays; however, one side effect of this 

procedure is to imposes a uniform variance structure amongst probes (Qin et al. 2013).  Yet 

differences in the variance amongst traits (i.e. probes/transcripts) and family groups are the 

parameters of interest in a quantitative genetic analysis – ‘averaging’ these out would be 

antithetical to the objectives of such a study.  Supervised normalization has been proposed as an 

alternative method to statistically remove technical artefacts such as batch, array and dye effects 

 (Leek et al. 2010; Mecham et al. 2010).  Most importantly from a quantitative genetics 

perspective, supervised normalization has been shown to preserve the variance structure of 

expression data (Qin et al. 2013). 

The procedure works by accounting for nuisance variables (e.g. array effects) as random 

covariates – removing them in a manner analogous to the calculation of best linear unbiased 

predictors conditioned on random effects – whilst leaving effects due to biologically meaningful 

variables unadulterated.  For a formal mathematical expression of the procedure, see Mecham et 

al. (2010).  To normalize liver mRNA transcription data for variance components analysis, we 

used the R/Bioconductor package ‘snm’ (Mecham et al. 2010).  In this package, technical 

artefacts pertaining to each individual are coded as ‘adjustment variables’ in a model matrix:  

these included effects due to dye, array and batch (i.e. slide).  Effects of interest to the study 

objectives are similarly coded as a design matrix of ‘biological variables’, with the normalization 

algorithm designed to leave any variation attributable to them intact.  For the purpose of this 

study, ‘biological variables’ included thermal treatment, sex and family groupings – from the 

quantitative genetics perspective it is variation in the latter which is most essential for parameter 

estimation. 

 

Evaluating effects of normalization on data structure 

To evaluate the overall effect of supervised normalization on data structure, we first plotted the 

frequency distributions of mRNA quantitation, expressed as log2 of the fluorescence intensity, 

for both raw and normalized data (fig. 1).  A visual comparison of the distributions suggests that 

supervised normalization did not impose any ‘aggressive’ alterations:  their overall shapes are 

similar, and both are centered about the same range of intensity values.  Likewise a scatterplot of 

raw and normalized expression shows that data largely follow a 1:1 relationship (fig. 2A). 

To explore the relative magnitude of adjustments imposed by supervised normalization, we 

calculated the relative difference between pre- and post-normalization for each data point.  For 

every data pair (pre- and post-normalization values) we expressed the absolute value of their 

difference, relative to their mean.  Normalization affected a mean data shift of less than 10% for 

the vast majority of all data points (fig. 2B).  We also explored average normalization effects for 

each individual sample.  The average correlation between pre- and post-normalization data was 
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0.99, and none were observed less than 0.96 (fig. 2C), suggesting minimal adjustment effects of 

the normalization procedure.  Likewise, the average adjustment effect was less than 5% for most 

individuals (fig. 2D).  Taken together, these observations suggest that supervised normalization 

did not result in substantive alterations in expression data, and that subsequent inferences reflect 

patterns of heritability in expression, not statistical artefacts imposed on the data by 

normalization. 

 

Evaluating co-hybridization 

All mRNA extractions were treated with DNase and assayed for RNA quality and quantity, as 

well as cross-contamination with genomic DNA prior to labelling.  The cRNA amplification and 

labeling process should preclude labelling of gDNA.  Additionally, the custom array/probe 

design has been thoroughly validated  (Leder et al. 2009), and most importantly, the array 

contains both negative and spike-in control features used to define a background level against 

which ‘true’ expression is discernible (Benes and Muckenthaler 2003).  Thus, false signals due to 

co-hybridization with gDNA are extremely unlikely.  However, differential signal intensity due 

to array (i.e. co-hybridized individual) and/or dye effects are potential sources of co-

hybridization error, although supervised normalization is expected to remove these artefacts. 

To evaluate signal differences due to alternate co-hybridizing ‘partner’ effects, 12 randomly 

selected individuals were replicated across different arrays, co-hybridized with a different 

individual on each array.  Replicates were labelled with the same dye:  six individuals were 

labelled with Cy3, and six with Cy5.  Following normalization we compared the relative 

difference between replicate probes.  Overall differences were, on average, less than 3% of mean 

intensity, though some outliers persisted (fig. 3A).  Likewise, correlations between alternately 

labelled probes ranged from 0.986 to 0.996 (fig. 3B), suggesting little effect on signal intensity 

due to differing co-hybridization partners. 

To evaluate the efficacy of removing dye effects through normalization, 14 randomly selected 

individuals were labelled with both Cy3 and Cy5.  Following normalization we compared the 

relative difference between alternately labelled probes.  Overall differences were generally less 

than 5% of mean intensity, though some outliers persisted (fig. 4A).  Likewise, correlations 

between alternately labelled probes ranged from 0.959 to 0.994 (fig. 4B), suggesting that the 

majority of technical artefacts associated with dye chemistry were effectively removed by 

supervised normalization.  Nevertheless, we also included dye as a fixed effect in subsequent 

analyses to statistically ‘remove’ any lingering dye effects from the estimation of genetic 

parameters.  This was facilitated by the fact that assignment of dye labelling was conducted via 

blocked randomization:  individuals were selected at random within each family-by-treatment 

block to ensure each family had equal numbers of individuals labelled with each dye. 

As a final evaluation of the efficacy for supervised normalization to remove array effects (i.e. 

artefacts in measured intensity due to signal correlation with co-hybridization partner intensity), 

we explored patterns of sample clustering using all replicate individuals and their respective co-

hybridization partners.  Both samples and probes were sorted via hierarchical clustering using the 

‘Heatplus’ package for R/Bioconductor (Ploner 2014).  Clustering was performed on normalized 

data for all 14,955 probes prior to outlier removal and replicate averaging (fig. 5A).  We 

reasoned that if co-hybridization artefacts were effectively removed, replicate individuals should 

cluster together, rather than co-hybridized partners.  This was the pattern observed (fig. 5B).  For 

example, the green asterisks flagging the co-hybridization partners for replicate individual 16 

(P.16a & P.16b), are found on branches far from the clustered replicate samples (16a & 16; green 
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brace).  Likewise replicate 12b (fig. 5B, top red asterisk) clusters with the other replicate sample 

for individual 12 (12a & 12b_P.1a; blue brace), although it was hybridized with another 

replicated individual (1a_P.12b; top blue asterisk) – triplicates of this individual also cluster 

together (red brace), with their co-hybridization partners dispersed across the dendrogram, 

clustering with their own replicates (red asterisks).  Taken together, patterns of replicate 

clustering (fig. 5), and high correlations between log2 intensity measurements from replicate 

samples (figs. 3&4), suggest that co-hybridization related artefacts have been effectively 

removed by normalization. 

 

Outlier detection & removal 

Although normalization appears to have been highly effective at removing most technical 

artefacts in the data, some outliers clearly persisted.  Since outliers can bias variance component 

estimates (Gervini and Yohai 1998; Yuan and Bentler 2001; de Andrade et al. 2003), we used a 

systematic strategy for their detection and removal prior to final data analysis, focusing foremost 

on the removal of potentially problematic transcripts.  We began by screening probes for 

individual log2 intensity values +/- 2 standard deviations from their family-by-treatment mean.  

This resulted in the removal of 208 individual data points (< 0.004% of total data).  Next we 

examined the pair-wise correlations of 69 probes which had from 3-10 technical replicates each.  

All replicates with a correlation ≥0.9 were retained and averaged by transcript.  In total, 67 

transcripts were retained and 2 were deleted (r < 0.3).  An additional 3,662 transcripts were 

represented as duplicates on the array.  If the pair-wise difference of a given transcript was 

greater than 0.75 (i.e. >10% mean difference), those individual’s data points were removed.  We 

then removed any transcripts with a correlation < 0.9 (n = 154); individual averages were 

calculated for the retained transcripts. 

After removal of problematic probes, the dataset was reduced to 10,711 transcripts, of which 

10,303 (96%) contained no missing values.  Of the 408 transcripts with missing values, 65 were 

missing 55 or more entries (i.e. >10% of individuals):  these transcripts were also removed from 

the final dataset.  An additional 119 transcripts were removed from the analysis due to missing 

values across entire family groups.  The remaining 224 transcripts contained fewer than 10 

missing entries, with no family-specific bias/concentration of missing values, and so were 

deemed suitable for inclusion in final analyses.  Since the final dataset consists of less than 

0.015% missing values (n = 839), it is highly unlikely that variance components estimation is 

biased by missing entries.  The final dataset used in these analyses is available as a tab-delimited 

text file in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number    

E-MTAB-3098 (Processed_QG_normalized.txt). 

 

Normalization Between Experiments:  Incorporating Among-Population 

Comparisons in mRNA Expression 

For inference of selection via QST to be valid, data should capture both genetic divergence among 

sampled populations, as well as within-population genetic variation (Leinonen et al. 2013).  A 

second dataset comprising individuals from three populations, including the population used for 

quantitative genetic analyses, was used to infer the among-population component of genetic 

variance.  This dataset, herein referred to as ‘among-population’ data, is well suited to the task 

given that each individual is representative of a unique, second generation family reared under 

identical laboratory conditions.  As such, differences observed amongst population groups can be 

http://www.ebi.ac.uk/arrayexpress
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attributed to genetic, rather than environmental causes.  However, this dataset alone is not 

sufficiently large for robust estimation of the within-population components of genetic variance 

(i.e. VA).  Consequently, we merged it with the larger dataset with greater power for estimation 

of additive genetic variance. 

Although combining datasets provides an ideal solution for improved parameter estimation, it 

also introduces the potential for errors/artefacts in the form of batch effects.  It is well known that 

batch effects can be a serious source of technical error, particularly for samples processed at 

different times or in different laboratories (Bammler et al. 2005; Leek et al. 2010).  However, the 

supervised normalization strategy we employ has been shown to effectively remove signal 

artefacts associated with batch in both simulated and real data (Mecham et al. 2010). 

Since not all probes present on the array used to generate the among-population dataset were 

present on the second array, we first removed all ‘missing’ probes from the quantitative genetic 

dataset.  Next we merged the raw/non-normalized data from both sources into a single dataset 

containing only transcripts common to both.  Data were then normalized as before, but with data 

source (i.e. data batch) included as the ‘adjustment variable.’  These data are also available via 

ArrayExpress (accession E-MTAB-3099; Processed_Qst_normalized.txt). 

 

Statistical Inference:  Evaluating Data & Model Assumptions 

Although most modern statistical computing/analysis is robust to violations of normality 

assumptions, inference and estimation of variance components, the backbone of the analyses 

which comprise our work, can be sensitive to problems with kurtosis (DeCarlo 1997; Bonett and 

Seier 2002).  To evaluate the degree to which data met this aspect of normality, we used the R 

package ‘moments’ to estimate Pearson’s measure of kurtosis (k) for each transcript (Komsta 

and Novomestky 2012) – estimates were performed for each sex-by-treatment grouping, to 

capture the structure of downstream analyses, then averaged.  Additionally, we tested whether 

kurtosis measured in each transcript differed significantly from normally distributed data using 

the Anscombe-Glynn test of kurtosis (Anscombe and Glynn 1983); significance was adjusted for 

multiple comparisons using a local false discovery rate. 

Kurtosis estimates ranged from 2.8 to 6.8 for 95% of transcript data, with a median value of 

3.6 (fig. 6A) – a value of 3 is expected for a perfectly normal dataset.  Kurtosis estimates did not 

differ from normal expectation for the majority of transcripts (fig. 6B):  fewer than 5% of 

transcripts (n = 506) exhibited significant leptokurtosis.  As such, data largely conform to model 

assumptions. 

Prior to modeling all 10,527 transcripts, we randomly selected 50 transcripts in order to 

optimize model control parameters (e.g. burn-in period; thinning interval).  We began with 

default parameters, and tried different iterations of increasing values until trace files displayed 

proper mixing and model convergence.  Additionally, we verified that estimates sampled from 

the Markov chain were sufficiently ‘spaced’ to avoid autocorrelation.  For estimating 

quantitative genetic parameters, we determined that a burn-in of 50,000 iterations and a sampling 

interval of 200,000 iterations consistently produced good mixing and model convergence; 

sampling each 200
th

 position of the Markov chain reduced autocorrelation of estimates.  Models 

for the estimation of QST required a longer burn-in (200,000 iterations); however, sampling 

parameters remained the same. 
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Phenotypic simulations – estimating power and false positives 

We used the R package ‘pedantics’ to simulate phenotypic data for all individuals under the 

realized pedigree over a range of heritable and environmental/error variance (Morrissey et al. 

2007).  Simulations were conducted such that total phenotypic variance summed to one, with any 

variance not assigned to VA being partitioned to residual (i.e. ‘environmental’ variation).  We 

performed 100 simulations for each heritability value over the following iterative ranges:  from 0 

to 0.01 in 0.001 intervals; 0.01 to 0.1 in 0.01 intervals; 0.1 to 0.5 in 0.05 intervals; and 0.5 to 1 in 

0.1 intervals.  We conducted an additional 900 simulations under the scenario of zero heritable 

variation (n = 1,000 in total).  Simulated data were analyzed under the same framework as the 

transcriptional data:  DIC of a fully parameterized model was compared to a ‘null’ model to 

determine the significance of each estimate.  Each simulated dataset was assigned a binomial 

score based on whether model selection was correct (e.g. ‘null’ model preference for simulated 

h
2
 = 0).  Statistical power was estimated via generalized linear model (binomial distribution; 

logit link function).  Bias was estimated by modeling estimated h
2
 as a function of ‘true’ (i.e. 

simulated) h
2
, bounded by upper and lower 95% PDI estimates, and contrasted against an 

expectation of a 1:1 relationship for perfect estimation. 

To estimate a ‘local’ false discovery rate, we calculated the proportion of correctly identified 

non-significant VA estimates (n = 753) out of the 1,000 simulations for which heritability was set 

to zero.  We then used this proportion to weight our estimate of the number of transcripts with 

significant additive genetic variance, and calculated the mean of these false estimates to identify 

values of h
2
 for which significant estimates should be regarded as suspect.  Unlike for VA, the 

‘pedantics’ package does not currently support the simulation of phenotypes with ‘known’ VD. 

Consequently, we could not conduct a formal power analysis.  However, we could estimate the 

‘local’ false discovery rate by simulating over a range of ‘known’ h
2
, with d

2
 (VD) implicitly 

zero.  In 1,009 of 1,100 simulations (h
2
 = 0 to 1 in 0.1 intervals; 100 simulations each), 

suggesting a high possibility of type I error.  We calculated the mean of these false estimates to 

identify values of d
2
 which should be regarded as suspect. 
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FIG. 1. Frequency distribution of log2 fluorescence intensity values before (A) and after 
(B) supervised normalization. 
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FIG. 2. Effects of supervised normalization.  (A) Scatterplot of log2 fluorescence 
intensity values for all probes before (raw) and after normalization.  The 1:1 line is 
plotted in red.  (B) Frequency distribution of relative differences (absolute value) 
between pre- and post-normalization data.  (C) Frequency distribution of correlation 
coefficients between pre- and post-normalized data.  Correlations were calculated for 
each individual.  (D) Distribution of per-individual average of relative differences 
(absolute value) between pre- and post-normalization data. 
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FIG. 3. Evaluating co-hybridization effects independent of dye effects.  (A) Boxplot of 
relative differences in log2 fluorescence between replicate individuals co-hybridized with 
different individual samples across arrays – replicates are labeled using the same dye 
chemistry.  Median difference is represented by the thick horizontal line within each box 
(quartile range); whiskers denote approximate 95% confidence intervals; outliers are 
shown as dots.  (B) Scatterplot of log2 fluorescence intensity values for each of the 12 
replicate individuals.  Individuals one (B.1) to six (B.6) are labelled with Cy3; individuals 
seven (B.7) through twelve (B.12) are in Cy5.  The 1:1 lines are plotted in red. 
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FIG. 3. Continued  
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FIG. 3. Continued  
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FIG. 4. Evaluating co-hybridization effects of differentially labelled probes post-
normalization.  (A) Boxplot of relative differences in log2 fluorescence between probes 
labelled with Cy3 and Cy5 for 14 dye-swapped individuals.  Replicates are hybridized 
on different arrays.  Median difference is represented by the thick horizontal line within 
each box (quartile range); whiskers denote approximate 95% confidence intervals; 
outliers are shown as dots.  (B) Scatterplot of log2 fluorescence intensity values in each 
dye chemistry for 14 dye-swapped individuals.  The 1:1 lines are plotted in red.  
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FIG. 4. Continued  
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FIG. 4. Continued  
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FIG. 5. Clustering of replicate individuals with their co-hybridization partners.  (A) 
Heatmap showing individual/sample clusters (columns) based on overall patterns of 
similarity in log2 signal intensity for all 14,955 probes (rows).  Data have been 
normalized, but outliers have not been removed, and replicate probes have not been 
averaged.  (B)  Expanded view of the sample dendrogram (top), rotated clockwise.  
Duplicates are numbered (e.g. 1a & 1b), and their co-hybridization partners are labeled 
in reference to the duplicate number (e.g. P.1a & P.1b).  Three representative replicates 
are shown, highlighted with a coloured brace – co-hybridization partners are flagged 
with an asterisk of the same colour. 
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FIG. 5. Continued 
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FIG. 6. Evaluating normality of log2 fluorescence intensity values for all probes.  (A) 
Frequency distribution of kurtosis estimates for all transcripts.  (B) Distribution of FDR-
corrected p-values testing whether transcript kurtosis differed significantly from normal 
expectations (k = 3).  Bars represent a bin width of 0.05; thus, the first bar corresponds 
to those transcripts which deviate from normality. 
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