36 research outputs found

    Influence of Hsp90 and HDAC Inhibition and Tubulin Acetylation on Perinuclear Protein Aggregation in Human Retinal Pigment Epithelial Cells

    Get PDF
    Retinal pigment epithelial (RPE) cells are continually exposed to oxidative stress that contributes to protein misfolding, aggregation and functional abnormalities during aging. The protein aggregates formed at the cell periphery are delivered along the microtubulus network by dynein-dependent retrograde trafficking to a juxtanuclear location. We demonstrate that Hsp90 inhibition by geldanamycin can effectively suppress proteasome inhibitor, MG-132-induced protein aggregation in a way that is independent of HDAC inhibition or the tubulin acetylation levels in ARPE-19 cells. However, the tubulin acetylation and polymerization state affects the localization of the proteasome-inhibitor-induced aggregation. These findings open new perspectives for understanding the pathogenesis of protein aggregation in retinal cells and can be useful for the development of therapeutic treatments to prevent retinal cell deterioration

    Hsp70 binds reversibly to proteasome inhibitor-induced protein aggregates and evades autophagic clearance in ARPE-19 cells

    Get PDF
    Age-related macular degeneration (AMD) is characterized primarily by degeneration of the macular retinal pigment epithelium (RPE) that secondarily leads to cell death of photoreceptors and impaired central vision. Hallmarks of AMD are accumulation of lysosomal lipofuscin and extracellular drusen, which indicate impaired proteolysis in RPE cells. Cellular proteostasis is strongly regulated by molecular chaperones such as Hsp70 and proteasomal and autophagic clearance systems. We have recently shown that autophagy receptor SQSTM1/p62 binds irreversibly to proteasome inhibitor–induced perinuclear protein aggregates and undergoes autophagic clearance in RPE cell cultures. Revealing decreased autophagy, SQSTM1/p62 accumulates in macular area of donor AMD patient samples. In this study, we show that Hsp70 binds reversibly to proteasome inhibitor–induced perinuclear protein aggregates and does not become degraded by autophagy in ARPE-19 cells. Our observation reveals new opportunities to use a cytoprotective Hsp70 as a therapy target in the prevention of RPE cell degeneration and development of AMD

    Epithelial-Mesenchymal Transition and Senescence in the Retinal Pigment Epithelium of NFE2L2/PGC-1 alpha Double Knock-Out Mice

    Get PDF
    Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. In our previous studies, we found that deficiencies in the nuclear factor, erythroid 2 like 2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 alpha) genes caused AMD-like pathological phenotypes in mice. In the present work, we show hijacked epithelial-mesenchymal transition (EMT) due to the common loss of PGC-1 alpha and NFE2L2 (double knock-out, dKO) genes in aged animals. The implanted area was assessed by histology, immunohistochemistry and transmission electron microscopy. Confocal microscopy revealed altered regions in the filamentous actin ring. This contrasted with hexagonal RPE morphology in wild-type mice. The ultrastructural RPE features here illustrated loss of apical microvilli, alteration of cell-cell contact, loss of basal in-folding with deposits on Bruch's membrane, and excessive lipofuscin deposition in dKO samples. We also found the expression of epithelial-mesenchymal transition transcription factors, such as Snail, Slug, collagen 1, vimentin and OB-cadherin, to be significantly different in dKO RPEs. An increased immunoreactivity of senescence markers p16, DEC1 and HMGB1 was also noted. These findings suggest that EMT and senescence pathways may intersect in the retinas of dKO mice. Both processes can be activated by damage to the RPE, which may be caused by increased oxidative stress resulting from the absence of NFE2L2 and PGC-1 alpha genes, important for antioxidant defense. This dKO model may provide useful tools for studying AMD pathogenesis and evaluating novel therapies for this disease

    Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a multi-factorial disease that is the leading cause of irreversible and severe vision loss in the developed countries. It has been suggested that the pathogenesis of dry AMD involves impaired protein degradation in retinal pigment epithelial cells (RPE). RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, DNA and lipids and evoke tissue deterioration during the aging process. The ubiquitin-proteasome pathway and the lysosomal/autophagosomal pathway are the two major proteolytic systems in eukaryotic cells. NRF-2 (nuclear factor-erythroid 2-related factor-2) and PGC-1 alpha (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) are master transcription factors in the regulation of cellular detoxification. We investigated the role of NRF-2 and PGC-1 alpha in the regulation of RPE cell structure and function by using global double knockout (dKO) mice. The NRF-2/PGC-1 alpha dKO mice exhibited significant age-dependent RPE degeneration, accumulation of the oxidative stress marker, 4-HNE (4-hydroxynonenal), the endoplasmic reticulum stress markers GRP78 (glucose-regulated protein 78) and ATF4 (activating transcription factor 4), and damaged mitochondria. Moreover, levels of protein ubiquitination and autophagy markers p62/SQSTM1 (sequestosome 1), Beclin-1 and LC3B (microtubule associated protein 1 light chain 3 beta) were significantly increased together with the Iba-1 (ionized calcium binding adaptor molecule 1) mononuclear phagocyte marker and an enlargement of RPE size. These histopathological changes of RPE were accompanied by photoreceptor dysmorphology and vision loss as revealed by electroretinography. Consequently, these novel findings suggest that the NRF-2/PGC-1 alpha dKO mouse is a valuable model for investigating the role of proteasomal and autophagy clearance in the RPE and in the development of dry AMD.Peer reviewe

    Increased TRAIL and TRAIL receptor expression in ratcorneal stroma exposed to chemical burn damage

    No full text
    Purpose: To study the expression levels of TRAIL and TRAIL receptor in the rat cornea after alkali burn. Methods: A 2mm2 filter paper embedded with a 0.5 M NaOH solution was applied in the centre of cornea for 30 sec, then we followed healing process up to 14 days. Immunostainings were done for TRAIL and TRAIL receptor. For western blot analysis, corneal epithelial cells from 5 different rats were pooled. Results: The immunostaining showed a strong up-regulation of TRAIL and TRAIL receptor in the nuclear and perinuclear area of corneal stroma and limbal cells. The intensity of the staining regained baseline levels few days later. After 14 days the central corneal stroma appeared to be as in the control eyes. In corneal epithelial cells, the chemical burn seems to not sensibly affect the expression of TRAIL. The chemical burn slightly upregulated the TRAIL receptor in corneal epithelial cells between 3 and 7 days following the healing of the tissues. In conjunctival cells alkali burn slightly raised up TRAIL from day 1 to 14. Instead, the expression of TRAIL receptor does not present a significant difference between treated and control eye. Conclusions: TRAIL may be a novel regulator and therapy target to treat chemically damaged cornea
    corecore