517 research outputs found

    Potts models in the continuum. Uniqueness and exponential decay in the restricted ensembles

    Full text link
    In this paper we study a continuum version of the Potts model. Particles are points in R^d, with a spin which may take S possible values, S being at least 3. Particles with different spins repel each other via a Kac pair potential. In mean field, for any inverse temperature there is a value of the chemical potential at which S+1 distinct phases coexist. For each mean field pure phase, we introduce a restricted ensemble which is defined so that the empirical particles densities are close to the mean field values. Then, in the spirit of the Dobrushin Shlosman theory, we get uniqueness and exponential decay of correlations when the range of the interaction is large enough. In a second paper, we will use such a result to implement the Pirogov-Sinai scheme proving coexistence of S+1 extremal DLR measures.Comment: 72 pages, 1 figur

    Tooth serration morphologies in the genus Machimosaurus (Crocodylomorpha, Thalattosuchia) from the Late Jurassic of Europe

    Get PDF
    © 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. The attached file is the published version of the article

    Coexistence of ordered and disordered phases in Potts models in the continuum

    Full text link
    This is the second of two papers on a continuum version of the Potts model, where particles are points in Rd\mathbb R^d, d2d\ge 2, with a spin which may take S3S\ge 3 possible values. Particles with different spins repel each other via a Kac pair potential of range \ga^{-1}, \ga>0. In this paper we prove phase transition, namely we prove that if the scaling parameter of the Kac potential is suitably small, given any temperature there is a value of the chemical potential such that at the given temperature and chemical potential there exist S+1S+1 mutually distinct DLR measures.Comment: 57 pages, 1 figur

    Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET):feasibility of a new imaging concept using a clinical PET/MRI scanner

    Get PDF
    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized (13)C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and (18)F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO(2) ((13)C-HCO(3)) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of (13)C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of (13)C-pyruvate to (13)C-lactate. In this study, we combined it with (18)F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq (18)F-FDG. (13)C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized (13)C-pyruvate. Peak heights of (13)C-pyruvate and (13)C-lactate were quantified using a general linear model. Anatomic (1)H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased (13)C-lactate production, which also corresponded to high (18)F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high (18)F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high (13)C-lactate production. Accordingly, this clearly demonstrates how the Warburg Effect directly can be demonstrated by hyperpolarized (13)C-pyruvate MRSI. This was not possible with (18)F-FDG-PET imaging due to inability to discriminate between causes of increased glucose uptake. We propose that this new concept of simultaneous hyperpolarized (13)C-pyruvate MRSI and PET may be highly valuable for image-based non-invasive phenotyping of tumors. This methods may be useful for treatment planning and therapy monitoring

    Search for electron antineutrino interactions with the Borexino Counting Test Facility at Gran Sasso

    Full text link
    Electron antineutrino interactions above the inverse beta decay energy of protons (E_\bar{\nu}_e>1.8) where looked for with the Borexino Counting Test Facility (CTF). One candidate event survived after rejection of background, which included muon-induced neutrons and random coincidences. An upper limit on the solar νˉe\bar{\nu}_{e} flux, assumed having the 8^8B solar neutrino energy spectrum, of 1.1×105\times10^{5} cm2^{-2}~s1^{-1} (90% C.L.) was set with a 7.8 ton ×\times year exposure. This upper limit corresponds to a solar neutrino transition probability, νeνˉe\nu_{e} \to \bar{\nu}_{e}, of 0.02 (90% C.L.). Predictions for antineutrino detection with Borexino, including geoneutrinos, are discussed on the basis of background measurements performed with the CTF.Comment: 10 pages, 9 figures, 5 table

    Pulse-Shape discrimination with the Counting Test Facility

    Full text link
    Pulse shape discrimination (PSD) is one of the most distinctive features of liquid scintillators. Since the introduction of the scintillation techniques in the field of particle detection, many studies have been carried out to characterize intrinsic properties of the most common liquid scintillator mixtures in this respect. Several application methods and algorithms able to achieve optimum discrimination performances have been developed. However, the vast majority of these studies have been performed on samples of small dimensions. The Counting Test Facility, prototype of the solar neutrino experiment Borexino, as a 4 ton spherical scintillation detector immersed in 1000 tons of shielding water, represents a unique opportunity to extend the small-sample PSD studies to a large-volume setup. Specifically, in this work we consider two different liquid scintillation mixtures employed in CTF, illustrating for both the PSD characterization results obtained either with the processing of the scintillation waveform through the optimum Gatti's method, or via a more conventional approach based on the charge content of the scintillation tail. The outcomes of this study, while interesting per se, are also of paramount importance in view of the expected Borexino detector performances, where PSD will be an essential tool in the framework of the background rejection strategy needed to achieve the required sensitivity to the solar neutrino signals.Comment: 39 pages, 17 figures, submitted to Nucl. Instr. Meth.
    corecore