147 research outputs found

    Activation loop dynamics are controlled by conformation-selective inhibitors of ERK2

    Get PDF
    Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors

    Sodium glucose co-transporter 2 inhibition increases epidermal growth factor expression and improves outcomes in patients with type 2 diabetes

    Get PDF
    Underlying molecular mechanisms of the kidney protective effects of sodium glucose co-transporter 2 (SGLT2) inhibitors are not fully elucidated. Therefore, we studied the association between urinary epidermal growth factor (uEGF), a mitogenic factor involved in kidney repair, and kidney outcomes in patients with type 2 diabetes (T2D). The underlying molecular mechanisms of the SGLT2 inhibitor canagliflozin on EGF using single-cell RNA sequencing from kidney tissue were examined. Urinary EGF-to-creatinine ratio (uEGF/Cr) was measured in 3521 CANagliflozin cardioVascular Assessment Study (CANVAS) participants at baseline and week 52. Associations of uEGF/Cr with kidney outcome were assessed using multivariable-adjusted Cox regression models. Single-cell RNA sequencing was performed using protocol kidney biopsy tissue from ten young patients with T2D on SGLT2i, six patients with T2D on standard care only, and six healthy controls (HCs). In CANVAS, each doubling in baseline uEGF/Cr was associated with a 12% (95% confidence interval 1-22) decreased risk of kidney outcome. uEGF/Cr decreased after 52 weeks with placebo and remained stable with canagliflozin (between-group difference +7.3% (2.0-12.8). In young persons with T2D, EGF mRNA was primarily expressed in the thick ascending loop of Henle. Expression in biopsies from T2D without SGLT2i was significantly lower compared to HCs, whereas treatment with SGLT2i increased EGF levels closer to the healthy state. In young persons with T2D without SGLT2i, endothelin-1 emerged as a key regulator of the EGF co-expression network. SGLT2i treatment was associated with a shift towards normal EGF expression. Thus, decreased uEGF represents increased risk of kidney disease progression in patients with T2D. Canagliflozin increased kidney tissue expression of EGF and was associated with a downstream signaling cascade linked to tubular repair and reversal of tubular injury.</p

    Activation loop dynamics are controlled by conformation-selective inhibitors of ERK2

    Get PDF
    Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors

    Folding Circular Permutants of IL-1β: Route Selection Driven by Functional Frustration

    Get PDF
    Interleukin-1β (IL-1β) is the cytokine crucial to inflammatory and immune response. Two dominant routes are populated in the folding to native structure. These distinct routes are a result of the competition between early packing of the functional loops versus closure of the β-barrel to achieve efficient folding and have been observed both experimentally and computationally. Kinetic experiments on the WT protein established that the dominant route is characterized by early packing of geometrically frustrated functional loops. However, deletion of one of the functional loops, the β-bulge, switches the dominant route to an alternative, yet, as accessible, route, where the termini necessary for barrel closure form first. Here, we explore the effect of circular permutation of the WT sequence on the observed folding landscape with a combination of kinetic and thermodynamic experiments. Our experiments show that while the rate of formation of permutant protein is always slower than that observed for the WT sequence, the region of initial nucleation for all permutants is similar to that observed for the WT protein and occurs within a similar timescale. That is, even permutants with significant sequence rearrangement in which the functional-nucleus is placed at opposing ends of the polypeptide chain, fold by the dominant WT “functional loop-packing route”, despite the entropic cost of having to fold the N- and C- termini early. Taken together, our results indicate that the early packing of the functional loops dominates the folding landscape in active proteins, and, despite the entropic penalty of coalescing the termini early, these proteins will populate an entropically unfavorable route in order to conserve function. More generally, circular permutation can elucidate the influence of local energetic stabilization of functional regions within a protein, where topological complexity creates a mismatch between energetics and topology in active proteins

    Forty years on: clathrin-coated pits continue to fascinate

    Get PDF
    Clathrin mediated endocytosis (CME) is a fundamental process in cell biology and has been extensively investigated throughout the last several decades. Every cell biologist learns about it at some point during their education and the beauty of this process has led many of us to go deeper and make it the topic of our own research. Great progress has been made towards elucidating the mechanisms of CME and the field is becoming increasingly complex with several hundred new publications every year. This makes it easy to get lost in the vast amount of literature and to forget about the fundamentals of the field, based on the careful interpretation of simple observations made over 40 years ago. A study performed by Anderson, Brown and Goldstein in 1977 (Anderson et al., 1977) is a prime example of this. We therefore want to take a step back and examine how this seminal study was pivotal to our understanding of CME and its progression into ever increasing complexity over the last four decades

    Quantitative RT-PCR analysis of differentially expressed genes in Quercus suber in response to Phytophthora cinnamomi infection

    Get PDF
    cDNA-AFLP methodology was used to gain insight into gene fragments differentially present in the mRNA profiles of Quercus suber roots infected with zoospores of Phytophthora cinnamomi at different post challenge time points. Fifty-three transcript-derived fragments (TDFs) were identified and sequenced. Six candidate genes were selected based on their expression patterns and homology to genes known to play a role in defence. They encode a cinnamyl alcohol dehydrogenase2 (QsCAD2), a protein disulphide isomerase (QsPDI), a CC-NBS-LRR resistance protein (QsRPc), a thaumatin-like protein (QsTLP), a chitinase (QsCHI) and a 1,3-β-glucanase (QsGlu). Evaluation of the expression of these genes by quantitative polymerase chain reaction (qPCR) revealed that transcript levels of QsRPc, QsCHI, QsCAD2 and QsPDI increased during the first 24 h post-inoculation, while those of thaumatin-like protein decreased. No differential expression was observed for 1,3-β-glucanase (QsGlu).Four candidate reference genes, polymerase II (QsRPII), eukaryotic translation initiation factor 5A (QsEIF-5A), β-tubulin (QsTUB) and a medium subunit family protein of clathrin adaptor complexes (QsCACs) were assessed to determine the most stable internal references for qRT-PCR normalization in the Phytophthora-Q. suber pathosystem in root tissues. Those found to be more stable, QsRPII and QsCACs, were used as internal reference in the present work.Knowledge on the Quercus defence mechanisms against biotic stress is scarce. This study provides an insight into the gene profiling of a few important genes of Q. suber in response to P. cinnamomi infection contributing to the knowledge of the molecular interactions involving Quercus and root pathogens that can be useful in the future to understand the mechanisms underlying oak resistance to soil-borne oomycetes.Peer Reviewe

    Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly

    Get PDF
    The chaperone Hsc70 drives the clathrin assembly–disassembly cycle forward by stimulating dissociation of a clathrin lattice. A J-domain containing co-chaperone, auxilin, associates with a freshly budded clathrin-coated vesicle, or with an in vitro assembled clathrin coat, and recruits Hsc70 to its specific heavy-chain-binding site. We have determined by electron cryomicroscopy (cryoEM), at about 11 Å resolution, the structure of a clathrin coat (in the D6-barrel form) with specifically bound Hsc70 and auxilin. The Hsc70 binds a previously analysed site near the C-terminus of the heavy chain, with a stoichiometry of about one per three-fold vertex. Its binding is accompanied by a distortion of the clathrin lattice, detected by a change in the axial ratio of the D6 barrel. We propose that when Hsc70, recruited to a position close to its target by the auxilin J-domain, splits ATP, it clamps firmly onto its heavy-chain site and locks in place a transient fluctuation. Accumulation of the local strain thus imposed at multiple vertices can then lead to disassembly

    Exploring Off-Targets and Off-Systems for Adverse Drug Reactions via Chemical-Protein Interactome — Clozapine-Induced Agranulocytosis as a Case Study

    Get PDF
    In the era of personalized medical practice, understanding the genetic basis of patient-specific adverse drug reaction (ADR) is a major challenge. Clozapine provides effective treatments for schizophrenia but its usage is limited because of life-threatening agranulocytosis. A recent high impact study showed the necessity of moving clozapine to a first line drug, thus identifying the biomarkers for drug-induced agranulocytosis has become important. Here we report a methodology termed as antithesis chemical-protein interactome (CPI), which utilizes the docking method to mimic the differences in the drug-protein interactions across a panel of human proteins. Using this method, we identified HSPA1A, a known susceptibility gene for CIA, to be the off-target of clozapine. Furthermore, the mRNA expression of HSPA1A-related genes (off-target associated systems) was also found to be differentially expressed in clozapine treated leukemia cell line. Apart from identifying the CIA causal genes we identified several novel candidate genes which could be responsible for agranulocytosis. Proteins related to reactive oxygen clearance system, such as oxidoreductases and glutathione metabolite enzymes, were significantly enriched in the antithesis CPI. This methodology conducted a multi-dimensional analysis of drugs' perturbation to the biological system, investigating both the off-targets and the associated off-systems to explore the molecular basis of an adverse event or the new uses for old drugs

    Endogenous egg immune defenses in the yellow mealworm beetle (Tenebrio molitor)

    Get PDF
    In order to survive microbe encounters, insects rely on both physical barriers as well as local and systemic immune responses. Most research focusses on adult or larval defenses however, whereas insect eggs are also in need of protection. Lately, the defense of eggs against microbes has received an increasing amount of attention, be it through endogenous egg defenses, trans-generational immune priming (TGIP) or parental investment. Here we studied the endogenous immune response in eggs and adults of Tenebrio molitor. We show that many immune genes are induced in both adults and eggs. Furthermore, we show that eggs reach comparable levels of immune gene expression as adults. These findings show that the eggs of Tenebrio are capable of an impressive endogenous immune response, and indicate that such inducible egg defenses are likely common in insects

    American Gut: an Open Platform for Citizen Science Microbiome Research

    Get PDF
    McDonald D, Hyde E, Debelius JW, et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems. 2018;3(3):e00031-18
    corecore