477 research outputs found

    Double beta decay of 48^{48}Ca

    Get PDF
    48^{48}Ca, the lightest double beta decay candidate, is the only one simple enough to be treated exactly in the nuclear shell model. Thus, the ÎČÎČ(2Îœ)\beta\beta(2\nu) half-life measurement, reported here, provides a unique test of the nuclear physics involved in the ÎČÎČ\beta\beta matrix element calculation. Enriched 48^{48}Ca sources of two different thicknesses have been exposed in a time projection chamber, and yield T1/22Îœ=(4.3−1.1+2.4[stat.]±1.4[syst.])×1019_{1/2}^{2\nu} = (4.3^{+2.4}_{-1.1} [{\rm stat.}] \pm 1.4 [{\rm syst.}]) \times 10^{19} years, compatible with the shell model calculations.Comment: 4 pages, LaTex, 3 figures imbedded, PRL forma

    Measurement of collective flow in heavy ion collisions using particle pair correlations

    Get PDF
    We present a new type of flow analysis, based on a particle-pair correlation function, in which there is no need for an event-by-event determination of the reaction plane. Consequently, the need to correct for dispersion in an estimated reaction plane does not arise. Our method also offers the option to avoid any influence from particle misidentification. Using this method, streamer chamber data for collisions of Ar+KCl and Ar+BaI2 at 1.2 GeV/nucleon are compared with predictions of a nuclear transport model

    Comparison of Vlasov-Uehling-Uhlenbeck model with 4 π Heavy Ion Data

    Get PDF
    Streamer chamber data for collisions of Ar + KCl and Ar + BaI2 at 1.2 GeV/nucleon are compared with microscopic model predictions based on the Vlasov-Uehling-Uhlenbeck equation, for various density-dependent nuclear equations of state. Multiplicity distributions and inclusive rapidity and transverse momentum spectra are in good agreement. Rapidity spectra show evidence of being useful in determining whether the model uses the correct cross sections for binary collisions in the nuclear medium, and whether momentum-dependent interactions are correctly incorporated. Sideward flow results do not favor the same nuclear stiffness parameter at all multiplicities

    Isospin diffusion in semi-peripheral 58Ni^{58}Ni + 197Au^{197}Au collisions at intermediate energies (I): Experimental results

    Get PDF
    Isospin diffusion in semi-peripheral collisions is probed as a function of the dissipated energy by studying two systems 58Ni^{58}Ni + 58Ni^{58}Ni and 58Ni^{58}Ni + 197Au^{197}Au, over the incident energy range 52-74\AM. A close examination of the multiplicities of light products in the forward part of phase space clearly shows an influence of the isospin of the target on the neutron richness of these products. A progressive isospin diffusion is observed when collisions become more central, in connection with the interaction time

    Isospin Diffusion in 58^{58}Ni-Induced Reactions at Intermediate Energies

    Get PDF
    Isospin diffusion is probed as a function of the dissipated energy by studying two systems 58^{58}Ni+58^{58}Ni and 58^{58}Ni+197^{197}Au, over the incident energy range 52-74\AM. Experimental data are compared with the results of a microscopic transport model with two different parameterizations of the symmetry energy term. A better overall agreement between data and simulations is obtained when using a symmetry term with a potential part linearly increasing with nuclear density. The isospin equilibration time at 52 \AM{} is estimated to 130±\pm10 fm/cc

    Bimodality: a possible experimental signature of the liquid-gas phase transition of nuclear matter

    Full text link
    We have observed a bimodal behaviour of the distribution of the asymmetry between the charges of the two heaviest products resulting from the decay of the quasi-projectile released in binary Xe+Sn and Au+Au collisions from 60 to 100 MeV/u. Event sorting has been achieved through the transverse energy of light charged particles emitted on the quasi-target side, thus avoiding artificial correlations between the bimodality signal and the sorting variable. Bimodality is observed for intermediate impact parameters for which the quasi-projectile is identified. A simulation shows that the deexcitation step rather than the geometry of the collision appears responsible for the bimodal behaviour. The influence of mid-rapidity emission has been verified. The two bumps of the bimodal distribution correspond to different excitation energies and similar temperatures. It is also shown that it is possible to correlate the bimodality signal with a change in the distribution of the heaviest fragment charge and a peak in potential energy fluctuations. All together, this set of data is coherent with what would be expected in a finite system if the corresponding system in the thermodynamic limit exhibits a first order phase transition.Comment: 30 pages, 31 figure

    Coulomb chronometry to probe the decay mechanism of hot nuclei

    Get PDF
    In 129 Xe+ nat Sn central collisions from 8 to 25 MeV/A, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajec-tory calculations shows that the time scale between the consecutive break-ups decreases with increasing bombarding energy, becoming quasi-simultaneous above excitation energy E * = 4.0±\pm0.5 MeV/A. This transition from sequential to simultaneous break-up was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.Comment: 12 pages; 13 Figures; 4 Table; Accepted for publication in Physical Review
    • 

    corecore