77 research outputs found

    Pour une politique ambitieuse des données publiques

    Get PDF
    Ce rapport prĂ©sente une Ă©tude sur la rĂ©utilisation des donnĂ©es publiques, menĂ©e pour la DĂ©lĂ©gation aux usages de l’Internet du MinistĂšre de l’Enseignement supĂ©rieur et de la Recherche dans le cadre du Master d’Action Publique de l’École des Ponts ParisTech. Il met en perspective la problĂ©matique et les enjeux de l’Open Data, propose un Ă©tat des lieux de la rĂ©utilisation des donnĂ©es publiques en France, et dessine trois scĂ©narios prospectifs pour l’évolution future de ce mouvement. Elle prĂ©sente seize propositions pour une politique nationale ambitieuse d’ouverture et de rĂ©utilisation des donnĂ©es publiques. Quatre Ă©lĂšves de l’École des Ponts ParisTech, Pierre-Henri Bertin, Romain Lacombe, François Vauglin et Alice Vieillefosse ont menĂ© cette analyse de septembre 2010 Ă  janvier 2011, en rencontrant les acteurs clĂ©s de la rĂ©utilisation des donnĂ©es publiques, en prenant part Ă  des colloques internationaux, et en s’appuyant sur la bibliographie existante

    Recent Fluid Deformation closure for velocity gradient tensor dynamics in turbulence: time-scale effects and expansions

    Full text link
    In order to model pressure and viscous terms in the equation for the Lagrangian dynamics of the velocity gradient tensor in turbulent flows, Chevillard & Meneveau (Phys. Rev. Lett. 97, 174501, 2006) introduced the Recent Fluid Deformation closure. Using matrix exponentials, the closure allows to overcome the unphysical finite-time blow-up of the well-known Restricted Euler model. However, it also requires the specification of a decorrelation time scale of the velocity gradient along the Lagrangian evolution, and when the latter is chosen too short (or, equivalently, the Reynolds number is too high), the model leads to unphysical statistics. In the present paper, we explore the limitations of this closure by means of numerical experiments and analytical considerations. We also study the possible effects of using time-correlated stochastic forcing instead of the previously employed white-noise forcing. Numerical experiments show that reducing the correlation time scale specified in the closure and in the forcing does not lead to a commensurate reduction of the autocorrelation time scale of the predicted evolution of the velocity gradient tensor. This observed inconsistency could explain the unrealistic predictions at increasing Reynolds numbers.We perform a series expansion of the matrix exponentials in powers of the decorrelation time scale, and we compare the full original model with a linearized version. The latter is not able to extend the limits of applicability of the former but allows the model to be cast in terms of a damping term whose sign gives additional information about the stability of the model as function of the second invariant of the velocity gradient tensor.Comment: 11 pages, 14 figures, submitted to the special issue "Fluids and Turbulence" of Physica

    Ion-ion correlations: an improved one-component plasma correction

    Full text link
    Based on a Debye-Hueckel approach to the one-component plasma we propose a new free energy for incorporating ionic correlations into Poisson-Boltzmann like theories. Its derivation employs the exclusion of the charged background in the vicinity of the central ion, thereby yielding a thermodynamically stable free energy density, applicable within a local density approximation. This is an improvement over the existing Debye-Hueckel plus hole theory, which in this situation suffers from a "structuring catastrophe". For the simple example of a strongly charged stiff rod surrounded by its counterions we demonstrate that the Poisson-Boltzmann free energy functional augmented by our new correction accounts for the correlations present in this system when compared to molecular dynamics simulations.Comment: 5 pages, 2 figures, revtex styl

    Lagrangian evolution of velocity increments in rotating turbulence: The effects of rotation on non-Gaussian statistics

    Get PDF
    The effects of rotation on the evolution of non-Gaussian statistics of velocity increments in rotating turbulence are studied in this paper. Following the Lagrangian evolution of the velocity increments over a fixed distance on an evolving material element, we derive a set of equations for the increments which provides a closed representation for the nonlinear interaction between the increments and the Coriolis force. Applying a restricted-Euler-type closure to the system, we obtain a system of ordinary differential equations which retains the effects of nonlinear interaction between the velocity increments and the Coriolis force. A priori tests using direct numerical simulation data show that the system captures the important dynamics of rotating turbulence. The system is integrated numerically starting from Gaussian initial data. It is shown that the system qualitatively reproduces a number of observations in rotating turbulence. The statistics of the velocity increments tend to Gaussian when strong rotation is imposed. The negative skewness in the longitudinal velocity increments is weakened by rotation. The model also predicts that the transverse velocity increment in the plane perpendicular to the rotation axis will have positive skewness, and that the skewness will depend on the Rossby number in a non-monotonic way. Based on the system, we identify the dynamical mechanisms leading to the observations. (c) 2010 Elsevier B.V. All rights reserved

    A Generalization of the Stillinger-Lovett Sum Rules for the Two-Dimensional Jellium

    Full text link
    In the equilibrium statistical mechanics of classical Coulomb fluids, the long-range tail of the Coulomb potential gives rise to the Stillinger-Lovett sum rules for the charge correlation functions. For the jellium model of mobile particles of charge qq immersed in a neutralizing background, the fixing of one of the qq-charges induces a screening cloud of the charge density whose zeroth and second moments are determined just by the Stillinger-Lovett sum rules. In this paper, we generalize these sum rules to the screening cloud induced around a pointlike guest charge ZqZ q immersed in the bulk interior of the 2D jellium with the coupling constant Γ=ÎČq2\Gamma=\beta q^2 (ÎČ\beta is the inverse temperature), in the whole region of the thermodynamic stability of the guest charge Z>−2/ΓZ>-2/\Gamma. The derivation is based on a mapping technique of the 2D jellium at the coupling Γ\Gamma = (even positive integer) onto a discrete 1D anticommuting-field theory; we assume that the final results remain valid for all real values of Γ\Gamma corresponding to the fluid regime. The generalized sum rules reproduce for arbitrary coupling Γ\Gamma the standard Z=1 and the trivial Z=0 results. They are also checked in the Debye-H\"uckel limit Γ→0\Gamma\to 0 and at the free-fermion point Γ=2\Gamma=2. The generalized second-moment sum rule provides some exact information about possible sign oscillations of the induced charge density in space.Comment: 16 page

    Geometrical statistics of fluid deformation: Restricted Euler approximation and the effects of pressure

    Get PDF
    The geometrical statistics of fluid deformation are analyzed theoretically within the framework of the restricted Euler approximation, and numerically using direct numerical simulations. The restricted Euler analysis predicts that asymptotically a material line element becomes an eigenvector of the velocity gradient regardless its initial orientation. The asymptotic stretching rate equals the intermediate eigenvalue of the strain rate tensor. Analyses of numerical data show that the pressure Hessian is the leading cause to destroy the alignment between the longest axis of the material element and the strongest stretching eigendirection of the strain rate. It also facilitates the alignment between the longest axis of the element and the intermediate eigendirection of the strain rate during initial evolution, but tends to oppose the alignment later

    Vorticity alignment results for the three-dimensional Euler and Navier-Stokes equations

    Full text link
    We address the problem in Navier-Stokes isotropic turbulence of why the vorticity accumulates on thin sets such as quasi-one-dimensional tubes and quasi-two-dimensional sheets. Taking our motivation from the work of Ashurst, Kerstein, Kerr and Gibson, who observed that the vorticity vector {\boldmath\omega} aligns with the intermediate eigenvector of the strain matrix SS, we study this problem in the context of both the three-dimensional Euler and Navier-Stokes equations using the variables \alpha = \hat{{\boldmath\xi}}\cdot S\hat{{\boldmath\xi}} and {\boldmath\chi} = \hat{{\boldmath\xi}}\times S\hat{{\boldmath\xi}} where \hat{{\boldmath\xi}} = {\boldmath\omega}/\omega. This introduces the dynamic angle ϕ(x,t)=arctan⁥(χα)\phi (x,t) = \arctan(\frac{\chi}{\alpha}), which lies between {\boldmath\omega} and S{\boldmath\omega}. For the Euler equations a closed set of differential equations for α\alpha and {\boldmath\chi} is derived in terms of the Hessian matrix of the pressure P={p,ij}P = \{p_{,ij}\}. For the Navier-Stokes equations, the Burgers vortex and shear layer solutions turn out to be the Lagrangian fixed point solutions of the equivalent (\alpha,{\boldmath\chi}) equations with a corresponding angle ϕ=0\phi = 0. Under certain assumptions for more general flows it is shown that there is an attracting fixed point of the (\alpha,\bchi) equations which corresponds to positive vortex stretching and for which the cosine of the corresponding angle is close to unity. This indicates that near alignment is an attracting state of the system and is consistent with the formation of Burgers-like structures.Comment: To appear in Nonlinearity Nov. 199
    • 

    corecore