UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Second-moment sum rules for correlation functions in a classical ionic mixture

Suttorp, L.G.

Publication date
1992

Published in
Physics of nonideal plasmas

Link to publication

Citation for published version (APA):

Suttorp, L. G. (1992). Second-moment sum rules for correlation functions in a classical ionic
mixture. In W. Ebeling (Ed.), Physics of nonideal plasmas (pp. 73-80). (Teubner-Texte zur
Physik; No. 26). Teubner.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Download date:11 Feb 2023


https://dare.uva.nl/personal/pure/en/publications/secondmoment-sum-rules-for-correlation-functions-in-a-classical-ionic-mixture(bdad946e-5f1a-4c86-923b-29474eac69d4).html

SECOND-MOMENT SUM RULES FOR CORRELATION
FUNCTIONS IN A CLASSICAL IONIC MIXTURE

L.G. Suttorp
Institute for Theoretical Physics, Valckenierstraat 65,
1018 XE Amsterdam, The Netherlands

Abstract

The complete set of second-moment sum rules for the correlation functions of arbitrarily
high order describing a classical multi-component ionic mixture in equilibrium is derived
from the grand-canonical ensemble. The connection of these sum rules with the large-scale
behaviour of fluctuations in an ionic mixture is pointed out.

1 Introduction

The equilibrium correlations in classical Coulomb systems are dominated by screening effects, as has
first been demonstrated by Debye and Hiickel for dilute systems. These screening effects give rise
to sum rules that determine the first few moments of the correlation functions. An example of such
a sum rule is the second-moment rule obtained by Stillinger and Lovett [1]. For a one-component
plasma it gives an exact expression for the second moment of the pair correlation function. If the
system is a mixture of several species of charged particles, the Stillinger-Lovett rule contains a
weighted sum of partial pair correlation functions for each of the species. A systematic treatment
of second-moment sum rules for both two- and three particle correlation functions of ionic mixtures
has been given a few years ago [2], [3]. As shown in these papers generalized Stillinger-Lovett sum
rules, with different weights entering the summation over the species, can be formulated as well.
These generalized sum rules are indispensable in deriving fluctuation formulas for an ionic mixture.

Recently, second-moment sum rules for correlation functions of arbitrarily high order have been
discussed for the special case of a one-component plasma [4], [5]. It is the purpose of the present
paper to generalize these results and derive the complete set of second-moment sum rules for the
higher-order correlation functions of general multi-component ionic mixtures. Moreover, we wish
to establish the connection of these sum rules with the large-scale behaviour of the fluctuations in
ionic mixtures. An important tool in our derivation will be a set of differentiation formulas that
determine the partial derivatives of average physical quantities with respect to the thermodynamic
variables characterizing an ionic mixture in equilibrium.

2 Grand-canonical ensemble

A multi-component ionic mixture with s species of charged particles in a neutralizing background
is described by the Hamiltonian
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The phase space of the system is determined by the positions q,, and the momenta p,, of the
particles, which are labeled by a double index oa, with ¢ indicating the species. The charges
and masses of the particles of species o are e, and m,, respectively. The interaction between
the particles is given by the Coulomb potential v(r) = 1/(4nr). Self-interactions are excluded, as
indicated by the prime at the first summation sign between the square brackets. The charge density
—g, of the neutralizing background is uniform throughout the volume V' of the system.

Equilibrium averages can be evaluated with the use of the grand-canonical ensemble the weight
function of which is
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por = Zy! [H N,,!h?’N”] exp(8)_ peN, — BH) (2.2)

with 3 the inverse temperature, y, the chemical potentials, and Z,, the grand-canonical partition
function. Since H depends on ¢,, the weight function depends on a thermodynamically overcom-
plete set of s + 2 variables, namely 3, {8u,} and g,. The same is true for the grand-canonical
partition function. However, as a consequence of the long-range nature of the Coulomb interac-
tions non-neutral configurations for which Y e, N, differs from Vyg,, are strongly suppressed in
the thermodynamic limit, so that ¢, is in fact determined once 8 and {SBu,} are given. It can be
proved [3] that the grand-canonical partition function is related to the pressure p in the usual way,
namely as

. 1
if the background charge density is chosen such that the constraint
0
D/ 4Buo}

is satisfied identically. This constraint fixes g, as a function of the independent variables 5 and
{Bus}. Likewise, the pressure pis a function of these variables, which fulfils the standard differential
relation d(fBp) = —u,dB + ¥, ned(Bis), with u, the internal energy density and n, the partial
densities.

On account of the homogeneity of the Coulomb potential the pressure obeys a scaling relation
which reads

3
p(ﬁa {6”0}) = )‘4p()\/6a {/B/'LU - 5 IOg )‘}) ) (25)
for all positive \. Likewise, the partial densities fulfil the scaling relation

1o (B, Bito) = Xong(AB, {B1g — 5 logA}) (26)

Differentiation of (2.5) and (2.6) with respect to A yields the well-known equation of state for
Coulomb systems

1 n
= a2 2.7
P=3m+t5s (2.7)
(with n the total particle density) and an identity for the partial densities of the form
0 3 0
— == 3ln,=0 . 2.8
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The equilibrium average (f) of a microscopic quantity f depends on the variables 8 and {Su,}
via the weight function p,,. Formal expressions for the partial derivatives of (f) follow by employing
(2.2). In taking the derivatives one should be careful in accounting for the dependence through the
charge density g, [3]. If the latter is kept fixed differentiation of {f) with respect to Su, yields the



fluctuation expression {(f — (f))(N, — (N,))). The complete expression for the partial derivative
O(f)/0Bu, contains an additional term:

(%)ﬂ’{w = (= (M, - ) + (50 >)ﬂ o ( j;;g)ﬁ I

When this identity is summed over o, with weights e,, the first term at the right-hand side yields
an expression involving the fluctuation of the total charge >, e,N,, which is negligible in the
thermodynamic limit. Hence, one may solve for the partial derivative 0(f)/0g,. Substitution in
(2.9) then gives:

o{f) _ B 9¢ T o(f)
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with the abbreviation S = 83, €,0¢,/08 .. All partial derivatives are taken with respect to the
independent variables S and (Bu,. Likewise, one may derive a formal expression for the derivative
with respect to [:

={(f = {(MNWNe = (Nc))) (2.10)
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These differentiation formulas will be used to evaluate partial derivatives of the correlation func-
tions.

=—((f=(MH=(H))) . (2.11)

3 Correlation functions

The equilibrium correlation functions g{) o, (T1; ..., 1)) are defined as
Ny ...ngkggf?__ok(rl,...,rk) = < S b —qalal)...é(rk—qakak)> . (3.1)
Qaty..0p

Often we shall abbreviate the left-hand side as G®)(1,... k).
The correlation functions depend on 8 and {Bu,}. They satisfy the scaling relation:

3
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As a consequence the derivatives of the correlation function ¢g{¥) are linearly dependent. Using (2.8)
we may write the relation of linear dependence as:

[Zrz Vi +5—5-§ %‘1 +3k] G®A,...,k)=0 (3.3)

The spatial partial derivatives in (3.3) are determined by the hierarchy equations:

{5—1% + > [Vjv(i,j)]} GH1,... k) =
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with v(i, j) = es,e,,v(|r; — ;) and with the truncated correlation function defined as

GOk +1[1,. .. k) =g, - gy, [0%4D (1) =g L (r,m)] . (35)



The derivatives with respect to the thermodynamic variables in (3.3) can be evaluated with the
help of the diferentiation formulas (2.10) and (2.11). Let us first consider (2.10). Writing N, as
the integral of 3, 6(r — q,q) over the volume one may express the fluctuation expression at the
right-hand side in terms of correlation functions as well, with the result:

a B 0g 0 ] (k)
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k
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These are s — 1 independent relations for the s partial derivatives with respect to the chemical
potentials. Upon summing over o1, with a weight factor e,, , ,, the left-hand side yields 0, so that
one finds
k
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This is the well-known charge sum rule, which may be derived from the hierarchy equations as well.

We now turn to the derivative of G*) with respect to 3 as given by (2.11). Substituting (2.1)
at the right-hand side and rewriting the average in terms of correlation functions we find

li_éaqu 0 ]G(k)( k) =
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Here we introduced the generalized truncated correlation function

G(2|k)(/~c +LE+2(1,...,k) = ng, - .. Ny, [g((,1+?k+2(r1, oy TEi2)
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The truncated correlation function G?*) can be eliminated from (3.8) by using the hierarchy
equation (3.4). In fact, writing (3.4) for k& + 1 instead of k, and choosing j = k + 1 one derives
an expression for the derivative of G('®) (defined in (3.5)) with respect to ry,;. It contains an
integral with a function GA¥+Y(k + 2|1,... k + 1) that can be written as a linear combination
of GAR(k +1,k+2[1,...,k), GA®)(k+2[1,...,k) and G®)(1,... k). In this way one finds the
auxiliary relation:
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We now take the inner product of this vector identity with ry;, integrate over ri,; and sum over
Ok+1- At the left-hand side we use the symmetry with respect to the interchange of £+ 1 and k + 2,
and the homogeneity of the potential function. As a result we find an expression that is equal
to the term with G¥) in (3.8). In the first, third and fourth terms at the right-hand a partial
integration can be performed, while the second term at the right-hand side may be transformed
with the use of the identity

Yt - Vinw(is b +1) = —v(j,k +1) — 13- V(i k +1) . (3.11)

The contribution with V,v(j,k + 1) that arises in this way can be rewritten once more with the
help of (3.4). The identity that is finally obtained from (3.10) may be used to eliminate G?/*) from
(3.8). As a result the latter gets the form

0 B 9 | Aw _
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(3.12)

The term with the spatial derivatives in (3.12) can be eliminated with the help of the scaling
relation (3.3). The derivative with respect to § then drops out as well. Furthermore, the last two
terms in (3.12) may be transformed with the help of the Legendre expansion for the electrostatic
potential. In doing so it is convenient to choose as the integration domain for the integral over ry;
a large sphere S around the origin (with a radius tending to co). Using moreover the charge sum
rule (3.7) we write the last two terms of (3.12) in such a way that the integral over ry,; can be
carried out, with the result:

1

- iqv
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Insertion of this expression in (3.12) finally leads to the identity

3_ﬁ2 0q, 0 (k) _
Zb <o 85]%%@ (1,...,k) =

[

KGO, k) + Y /drkHG(llk)(k+1|1,...,k)]

Ok+1

- _5%

GM(1 26037‘] + Y eopir /drkHG(llk)(k + 111, .. .,k)r,%H} . (3.14)

Ok+4+1



This identity comes in addition to the s — 1 relations (3.6) found before. Together they constitute
s relations from which the partial derivatives of G*) with respect to the chemical potentials can
be found.

Solution of the s linear equations (3.6) and (3.14) for the partial derivatives G™*) /08, yields
the following result

0 k
——GW 1,... = (k) 1.... ' (11k) i
OBy G =GR ’k)]z::lé"ﬁ”kﬂ + /drk—i—lG (k+1[1,...,k)

g, k
_ B 9 G, . k)Y eqri+ > eak+2/drk+2G Yk +2|1,.. . k)i, (3.15)
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where we used the equality
04y - 3 0qy

%_523@0
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which follows from (2.8).

The complete set of partial derivatives of the correlation functions G*) with respect to the
chemical potentials has now been found. The expressions for these derivatives contain integrals of
the truncated correlation functions G(%).

4 Second-moment sum rules

A different way to present the results of the previous section consists in writing them as sum rules
for the zeroth and second moments of the truncated correlation functions. In fact, the zeroth
moment of GU'¥) is found directly from (3.6). Returning to the notation of (3.1) we get

Moy -+ Ny /drk 1 g((,1 U)Hl(rl,...,rkﬂ) — gé’?ak (rl,...,rk)] =
k
= —Ng; - nﬂ'kg((fl) Ok r17 -.., T Z 0,0k+1
0 B 0q, 8 k)
+ - — ey Ngy - - No Ggr’ g L1y oo, T . 4.1
laﬁuml S Bttonyy 2= 7 Tty | " "I (F1r - b

As remarked already below (3.6) this sum rule leads to the charge sum rule for the truncated
correlation functions if a suitable weighted sum over the species is carried out. The zeroth-order
sum rule found here does not contain such a sum: it is valid for each species separately. We
will refer to it as a generalized charge sum rule. Alternatively, we may write it in terms of the
Ursell functions h((,kl)gk that are related to the correlation functions through the standard cluster
decomposition.

The second-moment sum rule for the truncated correlation functions follows from (3.15). The
simplest form is obtained by summing that equation over 0,1, with weights e, since then the
first two terms at the right-hand side drop out on account of the charge sum rule (3.7). Adopting
again the notation of (3.1) we get

Ngy -+ - Ny, Z Copr1Mopir /drk 1 gg’if.%r)k_,_l (rl’ SR rk+1) - gg’i)...ak (rla ceey rk)] Tl%—f—l =
Ok+1
_ (®) 2 0 (®)
= N4 na'kgol Ok 1'1, ..., T Z _7 — a Z eo‘W”O& s na'kgal...ok (1'1, ey I'k) . (42)

By using the cluster decomposition one may rewrite this identity in terms of the Ursell functions.
The second-moment sum rule found here may be called a generalized Stillinger-Lovett relation. The



reason for that becomes obvious if the special case k£ = 1 is considered. Using translation invariance
and isotropy we may write (4.2) in that case as

6 0Jq,
Noy 260277'02 /drl?hmaz Tl? 2 = _§ 852 . (4'3)

This relation has been derived before [2]. Summation over o, with weights e,,, leads to the identity

6

Z Ny Ny €01 €y /drlghm@ (r12)ri, = _E , (4.4)
01,02

which is the well-known Stillinger-Lovett relation [1] for a mixture. It should be noted that (4.3) is
valid for each species oy separately, so that it is more general than (4.4). Likewise, (4.2) contains
k independent species labels.

A useful alternative form for the sum rule (4.2) is obtained by adopting a different set of indepen-
dent thermodynamic variables, namely the charge density ¢, and a set of reduced thermodynamic
potentials defined as [6]

Za’ €q' Lo
o= 3
S el
which satisfy the constraint }°_e,fi, = 0. In terms of these variables the combination of partial

derivatives occurring in (4.2) gets a simple form, since one has

1[0 )
- : (4.6)
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For the special case of the one-component plasma (with s = 1) the zeroth-moment sum rule (4.1)
is completely equivalent to the standard charge sum rules for the correlation or Ursell functions.
The second-moment sum rule (4.2) reduces then to the sum rule found before by Alastuey [4] and
by Vieillefosse and Brajon [5] for the one-component plasma.

The sum rules derived here are useful in studying the behaviour of large-scale fluctuations in an
ionic mixture. In particular, they can be employed to establish the small-wavenumber behaviour
of the Fourier transform of cross-fluctuation expressions containing the product of the local partial
density n,(r) = ¥, 0(r — dye) of species ¢ or of the local charge density g,(r) = >, e,n,(r) of
the particles on one hand, and an arbitrary localized microscopic configurational quantity f(r) on
the other hand. In general, the latter may be written as a linear combination of k-particle sum
variables of the form

Ho = Mo — (4'5)

fo)= X" foro(orars -+ Aoy T) - (4.7)
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The Fourier-transformed fluctuation expressions we are interested in have the form

1 *

7 (e (K" f(k)) (4.8)
and .

7 @] f) (4.9)

with the Fourier transform of the microscopic quantity f(r) defined as f(k) = [V drexp(—ik-r) f(r).
Writing the fluctuation expression (4.8) in terms of correlation functions and using the zeroth-
order sum rule (4.1) one easily derives the identity

of) B Ogy e o(f)
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Summing over o, with weights e,, one finds that all cross-fluctuation expressions containing the
Fourier transform of the local charge density ¢, (r) of the particles as a factor vanish in the long-
wavelength limit:

lim & (00 F0) =0 (4.11)

This result is equivalent to the charge sum rule for the k-point correlation function.

The first non-vanishing contribution in the small-wavenumber expansion of a cross-fluctuation
expression with the charge density is of second order in k. The coefficient of the second-order term
can be evaluated by employing the second-moment sum rule (4.2). One finds

fim 55 (4,09 700) = 5 e 50

(4.12)

In particular, putting f(k) equal to the Fourier transform of the local partial density n,(r) or of
the local charge density g,(r) of the particles one finds identities that are equivalent to (4.3) and
(4.4). A suggestive form for (4.12) is obtained by using a different set of variables as in (4.6):

11 ; _1(9{f)
i g (007 700 = 5 (57) (1.13

This identity is somewhat similar to the differentiation formulas that have been discussed in section
2. However, the similarity is superficial only: the present identity determines the second-order
contribution in the long-wavelength expansion of a fluctuation expression, whereas the identities of
section 2 fix the leading zeroth-order contributions of fluctuation expressions.
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